Spaces:
Paused
Paused
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from llama_cpp import Llama | |
| from multiprocessing import Process, Queue | |
| import uvicorn | |
| from dotenv import load_dotenv | |
| from difflib import SequenceMatcher | |
| load_dotenv() | |
| app = FastAPI() | |
| models = [ | |
| {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"}, | |
| {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"}, | |
| {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"}, | |
| {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"}, | |
| ] | |
| llms = [] | |
| for model in models: | |
| llm = Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename']) | |
| llms.append(llm) | |
| class ChatRequest(BaseModel): | |
| message: str | |
| top_k: int = 50 | |
| top_p: float = 0.95 | |
| temperature: float = 0.7 | |
| def generate_chat_response(request, queue): | |
| try: | |
| user_input = request.message | |
| responses = [] | |
| for llm in llms: | |
| response = llm.create_chat_completion( | |
| messages=[{"role": "user", "content": user_input}], | |
| top_k=request.top_k, | |
| top_p=request.top_p, | |
| temperature=request.temperature | |
| ) | |
| reply = response['choices'][0]['message']['content'] | |
| responses.append(reply) | |
| best_response = select_best_response(responses, request) | |
| queue.put(best_response) | |
| except Exception as e: | |
| queue.put(f"Error: {str(e)}") | |
| def select_best_response(responses, request): | |
| coherent_responses = filter_by_coherence(responses, request) | |
| best_response = filter_by_similarity(coherent_responses) | |
| return best_response | |
| def filter_by_coherence(responses, request): | |
| return responses | |
| def filter_by_similarity(responses): | |
| responses.sort(key=len, reverse=True) | |
| best_response = responses[0] | |
| for i in range(1, len(responses)): | |
| ratio = SequenceMatcher(None, best_response, responses[i]).ratio() | |
| if ratio < 0.9: | |
| best_response = responses[i] | |
| break | |
| return best_response | |
| async def generate_chat(request: ChatRequest): | |
| queue = Queue() | |
| p = Process(target=generate_chat_response, args=(request, queue)) | |
| p.start() | |
| p.join() | |
| response = queue.get() | |
| if "Error" in response: | |
| raise HTTPException(status_code=500, detail=response) | |
| return {"response": response} | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |