Update app.py
Browse files
app.py
CHANGED
@@ -3,35 +3,38 @@ import uvicorn
|
|
3 |
import requests
|
4 |
import os
|
5 |
import io
|
6 |
-
import time
|
7 |
import asyncio
|
8 |
from typing import List, Dict, Any
|
9 |
from tqdm import tqdm
|
10 |
from llama_cpp import Llama
|
11 |
import aiofiles
|
|
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
# Configuraci贸n de los modelos
|
16 |
model_configs = [
|
17 |
-
{"repo_id": "
|
18 |
-
{"repo_id": "
|
19 |
-
{"repo_id": "
|
20 |
-
{"repo_id": "
|
21 |
-
{"repo_id": "
|
22 |
-
{"repo_id": "
|
23 |
-
{"repo_id": "
|
24 |
-
{"repo_id": "
|
25 |
-
{"repo_id": "
|
26 |
-
{"repo_id": "
|
27 |
-
{"repo_id": "
|
28 |
-
{"repo_id": "
|
29 |
-
{"repo_id": "
|
30 |
-
{"repo_id": "
|
31 |
-
{"repo_id": "
|
32 |
-
{"repo_id": "
|
33 |
]
|
34 |
|
|
|
|
|
|
|
35 |
class ModelManager:
|
36 |
def __init__(self):
|
37 |
self.models = {}
|
@@ -40,64 +43,66 @@ class ModelManager:
|
|
40 |
self.index_lock = asyncio.Lock()
|
41 |
self.part_size = 1024 * 1024 # Tama帽o de cada parte en bytes (1 MB)
|
42 |
|
43 |
-
async def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
response = requests.get(url)
|
49 |
-
response.raise_for_status()
|
50 |
-
end_time = time.time()
|
51 |
-
download_duration = end_time - start_time
|
52 |
-
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
|
53 |
-
return io.BytesIO(response.content)
|
54 |
-
except requests.RequestException as e:
|
55 |
-
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
|
56 |
-
|
57 |
-
async def save_model_to_temp_file(self, model_config):
|
58 |
-
model_file = await self.download_model_to_memory(model_config)
|
59 |
-
temp_filename = f"/tmp/{model_config['filename']}"
|
60 |
-
print(f"Guardando el modelo en {temp_filename}")
|
61 |
-
async with aiofiles.open(temp_filename, 'wb') as f:
|
62 |
-
await f.write(model_file.getvalue())
|
63 |
-
print(f"Modelo guardado en {temp_filename}")
|
64 |
-
return temp_filename
|
65 |
-
|
66 |
-
async def load_model(self, model_config):
|
67 |
-
async with self.load_lock:
|
68 |
try:
|
69 |
-
temp_filename = await self.save_model_to_temp_file(model_config)
|
70 |
start_time = time.time()
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
end_time = time.time()
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
async def handle_large_model(self, model_filename, model_config):
|
103 |
total_size = os.path.getsize(model_filename)
|
@@ -116,7 +121,7 @@ class ModelManager:
|
|
116 |
async with self.index_lock:
|
117 |
part_name = f"part_{part_index}"
|
118 |
print(f"Indexando parte {part_index}")
|
119 |
-
temp_filename = f"
|
120 |
async with aiofiles.open(temp_filename, 'wb') as f:
|
121 |
await f.write(model_part.getvalue())
|
122 |
print(f"Parte {part_index} indexada y guardada")
|
@@ -156,16 +161,25 @@ async def generate(request: Request):
|
|
156 |
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
|
157 |
|
158 |
try:
|
159 |
-
model_manager = ModelManager()
|
160 |
-
tasks = [model_manager.load_model(config) for config in model_configs]
|
161 |
-
await asyncio.gather(*tasks)
|
162 |
responses = await model_manager.generate_response(user_input)
|
163 |
return {"responses": responses}
|
164 |
except Exception as e:
|
165 |
raise HTTPException(status_code=500, detail=str(e))
|
166 |
|
167 |
-
def
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
if __name__ == "__main__":
|
171 |
-
|
|
|
|
|
|
|
|
|
|
3 |
import requests
|
4 |
import os
|
5 |
import io
|
|
|
6 |
import asyncio
|
7 |
from typing import List, Dict, Any
|
8 |
from tqdm import tqdm
|
9 |
from llama_cpp import Llama
|
10 |
import aiofiles
|
11 |
+
import time
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
# Configuraci贸n de los modelos
|
16 |
model_configs = [
|
17 |
+
{"repo_id": "TheBloke/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
18 |
+
{"repo_id": "TheBloke/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
19 |
+
{"repo_id": "TheBloke/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
20 |
+
{"repo_id": "TheBloke/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
21 |
+
{"repo_id": "TheBloke/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
22 |
+
{"repo_id": "TheBloke/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
23 |
+
{"repo_id": "TheBloke/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
24 |
+
{"repo_id": "TheBloke/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
25 |
+
{"repo_id": "TheBloke/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
26 |
+
{"repo_id": "TheBloke/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
|
27 |
+
{"repo_id": "TheBloke/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
|
28 |
+
{"repo_id": "TheBloke/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
|
29 |
+
{"repo_id": "TheBloke/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
|
30 |
+
{"repo_id": "TheBloke/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"},
|
31 |
+
{"repo_id": "TheBloke/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
|
32 |
+
{"repo_id": "TheBloke/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
|
33 |
]
|
34 |
|
35 |
+
# Directorio para almacenar los modelos descargados
|
36 |
+
models_dir = "modelos"
|
37 |
+
|
38 |
class ModelManager:
|
39 |
def __init__(self):
|
40 |
self.models = {}
|
|
|
43 |
self.index_lock = asyncio.Lock()
|
44 |
self.part_size = 1024 * 1024 # Tama帽o de cada parte en bytes (1 MB)
|
45 |
|
46 |
+
async def download_model(self, model_config):
|
47 |
+
model_path = os.path.join(models_dir, model_config['filename'])
|
48 |
+
if not os.path.exists(model_path):
|
49 |
+
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
|
50 |
+
print(f"Descargando modelo desde {url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
try:
|
|
|
52 |
start_time = time.time()
|
53 |
+
response = requests.get(url, stream=True)
|
54 |
+
response.raise_for_status()
|
55 |
+
|
56 |
+
total_size = int(response.headers.get('content-length', 0))
|
57 |
+
with open(model_path, 'wb') as f:
|
58 |
+
with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Descargando {model_config['filename']}") as pbar:
|
59 |
+
for chunk in response.iter_content(chunk_size=8192):
|
60 |
+
f.write(chunk)
|
61 |
+
pbar.update(len(chunk))
|
62 |
end_time = time.time()
|
63 |
+
download_duration = end_time - start_time
|
64 |
+
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
|
65 |
+
except requests.RequestException as e:
|
66 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
|
67 |
+
else:
|
68 |
+
print(f"Modelo {model_config['filename']} ya descargado.")
|
69 |
+
return model_path
|
70 |
+
|
71 |
+
async def load_model(self, model_config):
|
72 |
+
async with self.load_lock:
|
73 |
+
if model_config['name'] not in self.models:
|
74 |
+
try:
|
75 |
+
model_path = await self.download_model(model_config)
|
76 |
+
start_time = time.time()
|
77 |
+
print(f"Cargando modelo desde {model_path}")
|
78 |
+
|
79 |
+
llama = Llama(model_path=model_path)
|
80 |
+
|
81 |
+
end_time = time.time()
|
82 |
+
load_duration = end_time - start_time
|
83 |
+
if load_duration > 0.5:
|
84 |
+
print(f"Modelo {model_config['name']} tard贸 {load_duration:.2f} segundos en cargar, dividiendo autom谩ticamente")
|
85 |
+
await self.handle_large_model(model_path, model_config)
|
86 |
+
else:
|
87 |
+
print(f"Modelo {model_config['name']} cargado correctamente en {load_duration:.2f} segundos")
|
88 |
+
|
89 |
+
tokenizer = llama.tokenizer
|
90 |
+
model_data = {
|
91 |
+
'model': llama,
|
92 |
+
'tokenizer': tokenizer,
|
93 |
+
'pad_token': tokenizer.pad_token,
|
94 |
+
'pad_token_id': tokenizer.pad_token_id,
|
95 |
+
'eos_token': tokenizer.eos_token,
|
96 |
+
'eos_token_id': tokenizer.eos_token_id,
|
97 |
+
'bos_token': tokenizer.bos_token,
|
98 |
+
'bos_token_id': tokenizer.bos_token_id,
|
99 |
+
'unk_token': tokenizer.unk_token,
|
100 |
+
'unk_token_id': tokenizer.unk_token_id
|
101 |
+
}
|
102 |
+
|
103 |
+
self.models[model_config['name']] = model_data
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error al cargar el modelo: {e}")
|
106 |
|
107 |
async def handle_large_model(self, model_filename, model_config):
|
108 |
total_size = os.path.getsize(model_filename)
|
|
|
121 |
async with self.index_lock:
|
122 |
part_name = f"part_{part_index}"
|
123 |
print(f"Indexando parte {part_index}")
|
124 |
+
temp_filename = os.path.join(models_dir, f"{part_name}.gguf")
|
125 |
async with aiofiles.open(temp_filename, 'wb') as f:
|
126 |
await f.write(model_part.getvalue())
|
127 |
print(f"Parte {part_index} indexada y guardada")
|
|
|
161 |
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
|
162 |
|
163 |
try:
|
|
|
|
|
|
|
164 |
responses = await model_manager.generate_response(user_input)
|
165 |
return {"responses": responses}
|
166 |
except Exception as e:
|
167 |
raise HTTPException(status_code=500, detail=str(e))
|
168 |
|
169 |
+
async def load_models_on_startup():
|
170 |
+
tasks = [model_manager.load_model(config) for config in model_configs]
|
171 |
+
await asyncio.gather(*tasks)
|
172 |
+
|
173 |
+
@app.on_event("startup")
|
174 |
+
async def startup_event():
|
175 |
+
global model_manager
|
176 |
+
model_manager = ModelManager()
|
177 |
+
await load_models_on_startup()
|
178 |
+
print("Modelos cargados correctamente. API lista.")
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
+
# Crear el directorio "modelos" si no existe
|
182 |
+
if not os.path.exists(models_dir):
|
183 |
+
os.makedirs(models_dir)
|
184 |
+
|
185 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|