Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,36 +6,53 @@ from sklearn.preprocessing import StandardScaler
|
|
6 |
from sklearn.linear_model import LogisticRegression, Perceptron
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from sklearn.metrics import accuracy_score
|
|
|
9 |
|
10 |
# Load or train models
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
df = pd.read_excel("Student-Employability-Datasets.xlsx", sheet_name="Data")
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
28 |
-
|
|
|
29 |
scaler = StandardScaler()
|
30 |
X_train_scaled = scaler.fit_transform(X_train)
|
31 |
X_test_scaled = scaler.transform(X_test)
|
32 |
-
|
|
|
33 |
logistic_regression = LogisticRegression(random_state=42)
|
34 |
logistic_regression.fit(X_train_scaled, y_train)
|
35 |
-
|
36 |
perceptron = Perceptron(random_state=42)
|
37 |
perceptron.fit(X_train_scaled, y_train)
|
38 |
-
|
|
|
39 |
with open("scaler.pkl", "wb") as scaler_file:
|
40 |
pickle.dump(scaler, scaler_file)
|
41 |
with open("logistic_regression.pkl", "wb") as model_file:
|
@@ -43,27 +60,44 @@ except FileNotFoundError:
|
|
43 |
with open("perceptron.pkl", "wb") as model_file:
|
44 |
pickle.dump(perceptron, model_file)
|
45 |
|
46 |
-
|
|
|
|
|
47 |
def predict_employability(name, ga, mos, pc, ma, sc, api, cs, model_choice):
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# Gradio UI
|
65 |
with gr.Blocks() as app:
|
66 |
-
gr.Markdown("#
|
|
|
67 |
with gr.Row():
|
68 |
with gr.Column():
|
69 |
name = gr.Textbox(label="Name")
|
@@ -75,7 +109,7 @@ with gr.Blocks() as app:
|
|
75 |
api = gr.Slider(1, 5, step=1, label="Ability to Present Ideas")
|
76 |
cs = gr.Slider(1, 5, step=1, label="Communication Skills")
|
77 |
model_choice = gr.Radio(["Logistic Regression", "Perceptron"], label="Select Model")
|
78 |
-
|
79 |
predict_btn = gr.Button("Get Evaluation")
|
80 |
|
81 |
with gr.Column():
|
@@ -87,4 +121,6 @@ with gr.Blocks() as app:
|
|
87 |
inputs=[name, ga, mos, pc, ma, sc, api, cs, model_choice],
|
88 |
outputs=[result_output]
|
89 |
)
|
90 |
-
|
|
|
|
|
|
6 |
from sklearn.linear_model import LogisticRegression, Perceptron
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from sklearn.metrics import accuracy_score
|
9 |
+
import os
|
10 |
|
11 |
# Load or train models
|
12 |
+
model_files = ["scaler.pkl", "logistic_regression.pkl", "perceptron.pkl"]
|
13 |
+
|
14 |
+
# Check if all model files exist
|
15 |
+
if all(os.path.exists(file) for file in model_files):
|
16 |
+
try:
|
17 |
+
with open("scaler.pkl", "rb") as scaler_file:
|
18 |
+
scaler = pickle.load(scaler_file)
|
19 |
+
|
20 |
+
with open("logistic_regression.pkl", "rb") as model_file:
|
21 |
+
logistic_regression = pickle.load(model_file)
|
22 |
+
|
23 |
+
with open("perceptron.pkl", "rb") as model_file:
|
24 |
+
perceptron = pickle.load(model_file)
|
25 |
+
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error loading models: {e}")
|
28 |
+
exit()
|
29 |
+
|
30 |
+
else:
|
31 |
+
print("Training models from scratch...")
|
32 |
+
|
33 |
+
# Load dataset
|
34 |
df = pd.read_excel("Student-Employability-Datasets.xlsx", sheet_name="Data")
|
35 |
+
|
36 |
+
# Prepare dataset
|
37 |
+
X = df.iloc[:, 1:-1].values # Select all feature columns
|
38 |
+
y = (df["CLASS"] == "Employable").astype(int) # Convert to binary labels
|
39 |
+
|
40 |
+
# Train-test split
|
41 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
42 |
+
|
43 |
+
# Feature scaling
|
44 |
scaler = StandardScaler()
|
45 |
X_train_scaled = scaler.fit_transform(X_train)
|
46 |
X_test_scaled = scaler.transform(X_test)
|
47 |
+
|
48 |
+
# Train models
|
49 |
logistic_regression = LogisticRegression(random_state=42)
|
50 |
logistic_regression.fit(X_train_scaled, y_train)
|
51 |
+
|
52 |
perceptron = Perceptron(random_state=42)
|
53 |
perceptron.fit(X_train_scaled, y_train)
|
54 |
+
|
55 |
+
# Save trained models
|
56 |
with open("scaler.pkl", "wb") as scaler_file:
|
57 |
pickle.dump(scaler, scaler_file)
|
58 |
with open("logistic_regression.pkl", "wb") as model_file:
|
|
|
60 |
with open("perceptron.pkl", "wb") as model_file:
|
61 |
pickle.dump(perceptron, model_file)
|
62 |
|
63 |
+
print("Training complete. Models saved.")
|
64 |
+
|
65 |
+
# Employability prediction function
|
66 |
def predict_employability(name, ga, mos, pc, ma, sc, api, cs, model_choice):
|
67 |
+
try:
|
68 |
+
if not name:
|
69 |
+
name = "The candidate"
|
70 |
+
|
71 |
+
input_data = np.array([[ga, mos, pc, ma, sc, api, cs]])
|
72 |
+
|
73 |
+
# Ensure scaler is correctly loaded
|
74 |
+
if scaler is None:
|
75 |
+
return "Error: Scaler not loaded properly."
|
76 |
+
|
77 |
+
# Transform input
|
78 |
+
input_scaled = scaler.transform(input_data)
|
79 |
+
|
80 |
+
# Select model and make prediction
|
81 |
+
if model_choice == "Logistic Regression":
|
82 |
+
prediction = logistic_regression.predict(input_scaled)
|
83 |
+
elif model_choice == "Perceptron":
|
84 |
+
prediction = perceptron.predict(input_scaled)
|
85 |
+
else:
|
86 |
+
return "Error: Invalid model selection."
|
87 |
+
|
88 |
+
# Return result
|
89 |
+
if prediction[0] == 1:
|
90 |
+
return f"{name} is Employable π"
|
91 |
+
else:
|
92 |
+
return f"{name} is Less Employable - Work Hard! πͺ"
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
return f"Error: {str(e)}"
|
96 |
|
97 |
# Gradio UI
|
98 |
with gr.Blocks() as app:
|
99 |
+
gr.Markdown("# π Employability Evaluation System")
|
100 |
+
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
103 |
name = gr.Textbox(label="Name")
|
|
|
109 |
api = gr.Slider(1, 5, step=1, label="Ability to Present Ideas")
|
110 |
cs = gr.Slider(1, 5, step=1, label="Communication Skills")
|
111 |
model_choice = gr.Radio(["Logistic Regression", "Perceptron"], label="Select Model")
|
112 |
+
|
113 |
predict_btn = gr.Button("Get Evaluation")
|
114 |
|
115 |
with gr.Column():
|
|
|
121 |
inputs=[name, ga, mos, pc, ma, sc, api, cs, model_choice],
|
122 |
outputs=[result_output]
|
123 |
)
|
124 |
+
|
125 |
+
# Launch the app
|
126 |
+
app.launch(server_port=7860, debug=True, share=True)
|