Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
6 |
+
from sklearn.linear_model import LogisticRegression, Perceptron
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.metrics import accuracy_score
|
9 |
+
|
10 |
+
# Load or train models
|
11 |
+
try:
|
12 |
+
with open("scaler.pkl", "rb") as scaler_file:
|
13 |
+
scaler = pickle.load(scaler_file)
|
14 |
+
|
15 |
+
with open("logistic_regression.pkl", "rb") as model_file:
|
16 |
+
logistic_regression = pickle.load(model_file)
|
17 |
+
|
18 |
+
with open("perceptron.pkl", "rb") as model_file:
|
19 |
+
perceptron = pickle.load(model_file)
|
20 |
+
|
21 |
+
except FileNotFoundError:
|
22 |
+
print("Training models...")
|
23 |
+
df = pd.read_excel("Student-Employability-Datasets.xlsx", sheet_name="Data")
|
24 |
+
X = df.iloc[:, 1:-2].values
|
25 |
+
y = (df["CLASS"] == "Employable").astype(int)
|
26 |
+
|
27 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
28 |
+
|
29 |
+
scaler = StandardScaler()
|
30 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
31 |
+
X_test_scaled = scaler.transform(X_test)
|
32 |
+
|
33 |
+
logistic_regression = LogisticRegression(random_state=42)
|
34 |
+
logistic_regression.fit(X_train_scaled, y_train)
|
35 |
+
|
36 |
+
perceptron = Perceptron(random_state=42)
|
37 |
+
perceptron.fit(X_train_scaled, y_train)
|
38 |
+
|
39 |
+
with open("scaler.pkl", "wb") as scaler_file:
|
40 |
+
pickle.dump(scaler, scaler_file)
|
41 |
+
with open("logistic_regression.pkl", "wb") as model_file:
|
42 |
+
pickle.dump(logistic_regression, model_file)
|
43 |
+
with open("perceptron.pkl", "wb") as model_file:
|
44 |
+
pickle.dump(perceptron, model_file)
|
45 |
+
|
46 |
+
# Prediction function
|
47 |
+
def predict_employability(name, ga, mos, pc, ma, sc, api, cs, model_choice):
|
48 |
+
if not name:
|
49 |
+
name = "The candidate"
|
50 |
+
|
51 |
+
input_data = np.array([[ga, mos, pc, ma, sc, api, cs]])
|
52 |
+
input_scaled = scaler.transform(input_data)
|
53 |
+
|
54 |
+
if model_choice == "Logistic Regression":
|
55 |
+
prediction = logistic_regression.predict(input_scaled)
|
56 |
+
else:
|
57 |
+
prediction = perceptron.predict(input_scaled)
|
58 |
+
|
59 |
+
if prediction[0] == 1:
|
60 |
+
return f"{name} is Employable π"
|
61 |
+
else:
|
62 |
+
return f"{name} is Less Employable - Work Hard! πͺ"
|
63 |
+
|
64 |
+
# Gradio UI
|
65 |
+
with gr.Blocks() as app:
|
66 |
+
gr.Markdown("# Employability Evaluation π")
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
name = gr.Textbox(label="Name")
|
70 |
+
ga = gr.Slider(1, 5, step=1, label="General Appearance")
|
71 |
+
mos = gr.Slider(1, 5, step=1, label="Manner of Speaking")
|
72 |
+
pc = gr.Slider(1, 5, step=1, label="Physical Condition")
|
73 |
+
ma = gr.Slider(1, 5, step=1, label="Mental Alertness")
|
74 |
+
sc = gr.Slider(1, 5, step=1, label="Self Confidence")
|
75 |
+
api = gr.Slider(1, 5, step=1, label="Ability to Present Ideas")
|
76 |
+
cs = gr.Slider(1, 5, step=1, label="Communication Skills")
|
77 |
+
model_choice = gr.Radio(["Logistic Regression", "Perceptron"], label="Select Model")
|
78 |
+
|
79 |
+
predict_btn = gr.Button("Get Evaluation")
|
80 |
+
|
81 |
+
with gr.Column():
|
82 |
+
result_output = gr.Textbox(label="Employability Prediction")
|
83 |
+
|
84 |
+
# Button Click Event
|
85 |
+
predict_btn.click(
|
86 |
+
fn=predict_employability,
|
87 |
+
inputs=[name, ga, mos, pc, ma, sc, api, cs, model_choice],
|
88 |
+
outputs=[result_output]
|
89 |
+
)
|
90 |
+
|
91 |
+
# Launch the app
|
92 |
+
app.launch(share=True) give me the module name and the requirements.txt
|