File size: 1,144 Bytes
4c7c078
c75e97c
4c7c078
 
923c242
4c7c078
 
c75e97c
4c7c078
 
c75e97c
4c7c078
b770b29
4c7c078
 
 
 
 
 
 
 
 
 
 
923c242
 
4c7c078
 
 
923c242
 
4c7c078
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import torch

# βœ… Get API token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")

# βœ… Authenticate with Hugging Face (without exposing the token in code)
login(HF_TOKEN)

# βœ… Load Model Efficiently
MODEL_NAME = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    token=HF_TOKEN,
    device_map="auto",
    torch_dtype=torch.float16,  
    load_in_8bit=True  
)

# βœ… Create LLM Pipeline
llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")

def analyze_spending_pattern(df):
    prompt = "Analyze the following UPI transactions:\n" + df.to_string()
    response = llm_pipeline(prompt, max_length=200)[0]["generated_text"]
    return response

def get_financial_advice(df):
    prompt = "Provide financial advice based on these UPI transactions:\n" + df.to_string()
    response = llm_pipeline(prompt, max_length=200)[0]["generated_text"]
    return response