Spaces:
Sleeping
Sleeping
Delete analysis.py
Browse files- analysis.py +0 -32
analysis.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
-
import torch
|
3 |
-
import os
|
4 |
-
|
5 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
6 |
-
MODEL_NAME = "TheBloke/Mistral-7B-Instruct-v0.1-GGUF" # Use a smaller model
|
7 |
-
|
8 |
-
# Load tokenizer
|
9 |
-
from transformers import AutoTokenizer
|
10 |
-
|
11 |
-
# Load tokenizer from the official Mistral model
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct")
|
13 |
-
|
14 |
-
# Load model (use torch.float16 if on GPU, otherwise use torch.float32 for CPU)
|
15 |
-
model = AutoModelForCausalLM.from_pretrained(
|
16 |
-
MODEL_NAME,
|
17 |
-
torch_dtype=torch.float32, # Change to float16 if running on GPU
|
18 |
-
device_map="auto", # Uses CPU if no GPU is available
|
19 |
-
token=HF_TOKEN
|
20 |
-
)
|
21 |
-
# ✅ Create LLM Pipeline
|
22 |
-
llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
23 |
-
|
24 |
-
def analyze_spending_pattern(df):
|
25 |
-
prompt = "Analyze the following UPI transactions:\n" + df.to_string()
|
26 |
-
response = llm_pipeline(prompt, max_length=200)[0]["generated_text"]
|
27 |
-
return response
|
28 |
-
|
29 |
-
def get_financial_advice(df):
|
30 |
-
prompt = "Provide financial advice based on these UPI transactions:\n" + df.to_string()
|
31 |
-
response = llm_pipeline(prompt, max_length=200)[0]["generated_text"]
|
32 |
-
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|