from transformers import pipeline from huggingface_hub import login import pandas as pd # 🔹 OPTIONAL: Authenticate if using a gated/private model # login(token="your_huggingface_token") # Uncomment and replace if needed # ✅ Use a Free Model (Mistral-7B-v0.1 OR Gemma-2B) MODEL_NAME = "tiiuae/falcon-7b-instruct" # Open-source alternative # Publicly available # MODEL_NAME = "google/gemma-2b" # Alternative (smaller but open-access) # Load the text generation model llm_pipeline = pipeline("text-generation", model=MODEL_NAME, device_map="auto") def analyze_spending_pattern(df): """ Analyze the user's spending behavior. """ prompt = f""" Here is the user's spending data: {df.to_string(index=False)} Identify spending trends, categorize expenses, and highlight areas for cost-saving. """ response = llm_pipeline(prompt, max_length=200, do_sample=True) return response[0]['generated_text'] def get_financial_advice(df): """ Provide personalized financial recommendations. """ prompt = f""" Given the following transaction history: {df.to_string(index=False)} Provide personalized recommendations to reduce expenses and improve financial health. """ response = llm_pipeline(prompt, max_length=200, do_sample=True) return response[0]['generated_text']