Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
7 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
import nltk
|
10 |
+
import gradio as gr
|
11 |
+
import os
|
12 |
+
import logging
|
13 |
+
import tensorflow as tf
|
14 |
+
|
15 |
+
# Suppress TensorFlow warnings and set logging level
|
16 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow info/warning logs
|
17 |
+
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
18 |
+
|
19 |
+
# Download NLTK data
|
20 |
+
nltk.download('punkt', quiet=True)
|
21 |
+
|
22 |
+
# Load the dataset
|
23 |
+
def load_data():
|
24 |
+
file_path = "zomato_data.csv"
|
25 |
+
try:
|
26 |
+
zomato_data = pd.read_csv(file_path)
|
27 |
+
except FileNotFoundError:
|
28 |
+
print("Warning: zomato_data.csv not found. Using dummy dataset.")
|
29 |
+
zomato_data = pd.DataFrame({
|
30 |
+
'name': ['Sample Restaurant'],
|
31 |
+
'online_order': ['Yes'],
|
32 |
+
'book_table': ['No'],
|
33 |
+
'rate': [4.0],
|
34 |
+
'approx_cost': [1000.0],
|
35 |
+
'listed_in(type)': ['Dining']
|
36 |
+
})
|
37 |
+
return zomato_data
|
38 |
+
|
39 |
+
# Preprocess data
|
40 |
+
def preprocess_data(zomato_data):
|
41 |
+
zomato_data.rename(columns={'approx_cost(for two people)': 'approx_cost'}, inplace=True)
|
42 |
+
zomato_data['approx_cost'] = zomato_data['approx_cost'].astype(str).str.replace(',', '', regex=True).astype(float)
|
43 |
+
zomato_data['rate'] = zomato_data['rate'].astype(str).str.split('/').str[0].replace(['NEW', '-', 'nan'], None).astype(float)
|
44 |
+
zomato_data.fillna("Unknown", inplace=True)
|
45 |
+
zomato_data['search_text'] = (
|
46 |
+
"Name: " + zomato_data['name'] + " | " +
|
47 |
+
"Online Order: " + zomato_data['online_order'] + " | " +
|
48 |
+
"Book Table: " + zomato_data['book_table'] + " | " +
|
49 |
+
"Rate: " + zomato_data['rate'].astype(str) + " | " +
|
50 |
+
"Cost for Two: ₹" + zomato_data['approx_cost'].astype(str) + " | " +
|
51 |
+
"Cuisine Type: " + zomato_data['listed_in(type)']
|
52 |
+
)
|
53 |
+
return zomato_data
|
54 |
+
|
55 |
+
# Generate Q&A pairs
|
56 |
+
def generate_qa_pairs(zomato_data):
|
57 |
+
qa_pairs = []
|
58 |
+
for _, row in zomato_data.iterrows():
|
59 |
+
qa_pairs.append((f"Can I order online at {row['name']}?",
|
60 |
+
f"{'Yes' if row['online_order'] == 'Yes' else 'No'}, online ordering is {'available' if row['online_order'] == 'Yes' else 'not available'} at {row['name']}."))
|
61 |
+
qa_pairs.append((f"Can I book a table at {row['name']}?",
|
62 |
+
f"{'Yes' if row['book_table'] == 'Yes' else 'No'}, table booking is {'available' if row['book_table'] == 'Yes' else 'not available'} at {row['name']}."))
|
63 |
+
qa_pairs.append((f"What is the rating of {row['name']}?", f"The rating of {row['name']} is {row['rate']}/5."))
|
64 |
+
qa_pairs.append((f"What is the cost for two people at {row['name']}?",
|
65 |
+
f"The approximate cost for two people at {row['name']} is ₹{row['approx_cost']}."))
|
66 |
+
qa_pairs.append((f"What type of cuisine does {row['name']} serve?",
|
67 |
+
f"{row['name']} is listed in {row['listed_in(type)']}."))
|
68 |
+
return qa_pairs
|
69 |
+
|
70 |
+
# Initialize vectorizer
|
71 |
+
def init_vectorizer(zomato_data):
|
72 |
+
vectorizer = TfidfVectorizer()
|
73 |
+
vectorized_data = vectorizer.fit_transform(zomato_data['search_text'])
|
74 |
+
return vectorizer, vectorized_data
|
75 |
+
|
76 |
+
# Load tokenizer and model
|
77 |
+
def load_model_and_tokenizer(zomato_data):
|
78 |
+
model = None
|
79 |
+
tokenizer = None
|
80 |
+
try:
|
81 |
+
model = load_model("chatbot_model.h5")
|
82 |
+
tokenizer = Tokenizer()
|
83 |
+
qa_pairs = generate_qa_pairs(zomato_data)
|
84 |
+
questions, answers = zip(*qa_pairs)
|
85 |
+
tokenizer.fit_on_texts(questions + answers)
|
86 |
+
print("Successfully loaded model and initialized tokenizer.")
|
87 |
+
except FileNotFoundError:
|
88 |
+
print("Warning: chatbot_model.h5 not found. Falling back to TF-IDF-based responses.")
|
89 |
+
except Exception as e:
|
90 |
+
print(f"Error loading model: {e}. Falling back to TF-IDF-based responses.")
|
91 |
+
return model, tokenizer
|
92 |
+
|
93 |
+
# Chatbot query using TF-IDF
|
94 |
+
def chatbot_query(query, vectorizer, vectorized_data, zomato_data):
|
95 |
+
query_vector = vectorizer.transform([query])
|
96 |
+
similarities = cosine_similarity(query_vector, vectorized_data)
|
97 |
+
most_similar_idx = np.argmax(similarities)
|
98 |
+
return zomato_data['search_text'].iloc[most_similar_idx]
|
99 |
+
|
100 |
+
# Chatbot response using LSTM model
|
101 |
+
def chatbot_response(input_text, model, tokenizer, vectorizer, vectorized_data, zomato_data, max_len=20):
|
102 |
+
if model and tokenizer:
|
103 |
+
input_seq = tokenizer.texts_to_sequences([input_text])
|
104 |
+
input_seq = pad_sequences(input_seq, maxlen=max_len, padding='post')
|
105 |
+
try:
|
106 |
+
pred = model.predict([input_seq, input_seq], verbose=0)
|
107 |
+
pred_idx = np.argmax(pred[0], axis=1)
|
108 |
+
response = " ".join([tokenizer.index_word.get(idx, "") for idx in pred_idx if idx > 0])
|
109 |
+
if response.strip():
|
110 |
+
return response
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Model prediction failed: {e}")
|
113 |
+
# Fallback to TF-IDF
|
114 |
+
return chatbot_query(input_text, vectorizer, vectorized_data, zomato_data)
|
115 |
+
|
116 |
+
# Initialize everything
|
117 |
+
zomato_data = load_data()
|
118 |
+
zomato_data = preprocess_data(zomato_data)
|
119 |
+
vectorizer, vectorized_data = init_vectorizer(zomato_data)
|
120 |
+
model, tokenizer = load_model_and_tokenizer(zomato_data)
|
121 |
+
|
122 |
+
# Gradio interface
|
123 |
+
def gradio_chatbot(user_query):
|
124 |
+
if not user_query.strip():
|
125 |
+
return "Please enter a valid query."
|
126 |
+
response = chatbot_response(user_query, model, tokenizer, vectorizer, vectorized_data, zomato_data)
|
127 |
+
return response
|
128 |
+
|
129 |
+
# Create Gradio interface
|
130 |
+
iface = gr.Interface(
|
131 |
+
fn=gradio_chatbot,
|
132 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask about a restaurant (e.g., 'Can I order online at Cafe XYZ?')"),
|
133 |
+
outputs="text",
|
134 |
+
title="Zomato Restaurant Chatbot",
|
135 |
+
description="Ask questions about restaurants, such as online ordering, table booking, ratings, costs, or cuisine types."
|
136 |
+
)
|
137 |
+
|
138 |
+
# Launch the app
|
139 |
+
if __name__ == "__main__":
|
140 |
+
iface.launch()
|