File size: 751 Bytes
aaf19ed
1886dd0
aaf19ed
1886dd0
 
aaf19ed
1886dd0
aaf19ed
1886dd0
 
 
aaf19ed
1886dd0
 
 
 
 
 
 
 
aaf19ed
1886dd0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from transformers import pipeline

# Load pre-trained sentiment analysis model from Hugging Face
sentiment_pipeline = pipeline("tabularisai/multilingual-sentiment-analysis")

def analyze_sentiment(text):
    result = sentiment_pipeline(text)[0]
    label = result['label']
    score = round(result['score'], 3)
    return f"Sentiment: {label} | Confidence: {score}"

# Gradio UI
iface = gr.Interface(
    fn=analyze_sentiment,
    inputs=gr.Textbox(label="Enter Text"),
    outputs=gr.Textbox(label="Sentiment Result"),
    title="Sentiment Analysis with Hugging Face 🤗",
    description="This app performs sentiment analysis on user input text using Hugging Face Transformers."
)

if __name__ == "__main__":
    iface.launch()