Ujeshhh commited on
Commit
2747657
·
verified ·
1 Parent(s): 6a24fdd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -6,8 +6,8 @@ import gradio as gr
6
  processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
7
  model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
8
 
9
- # Load MarianMT model for translation (e.g., to Spanish)
10
- translation_model_name = "Helsinki-NLP/opus-mt-en-es"
11
  translator_model = MarianMTModel.from_pretrained(translation_model_name)
12
  translator_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
13
 
@@ -37,7 +37,7 @@ def generate_caption(image):
37
  out = model.generate(**inputs)
38
  caption = processor.decode(out[0], skip_special_tokens=True)
39
 
40
- # Translate caption to local language (e.g., Spanish)
41
  translated = translator_tokenizer(caption, return_tensors="pt", padding=True)
42
  translated_text = translator_model.generate(**translated)
43
  translation = translator_tokenizer.decode(translated_text[0], skip_special_tokens=True)
@@ -48,7 +48,7 @@ def generate_caption(image):
48
  interface = gr.Interface(fn=generate_caption,
49
  inputs=gr.Image(type="pil"),
50
  outputs=[gr.Textbox(label="Caption in English"),
51
- gr.Textbox(label="Caption in Local Language")])
52
 
53
  # Launch the Gradio app
54
  interface.launch()
 
6
  processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
7
  model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
8
 
9
+ # Load MarianMT model for translation (English to Tamil)
10
+ translation_model_name = "Helsinki-NLP/opus-mt-en-ta"
11
  translator_model = MarianMTModel.from_pretrained(translation_model_name)
12
  translator_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
13
 
 
37
  out = model.generate(**inputs)
38
  caption = processor.decode(out[0], skip_special_tokens=True)
39
 
40
+ # Translate caption to Tamil
41
  translated = translator_tokenizer(caption, return_tensors="pt", padding=True)
42
  translated_text = translator_model.generate(**translated)
43
  translation = translator_tokenizer.decode(translated_text[0], skip_special_tokens=True)
 
48
  interface = gr.Interface(fn=generate_caption,
49
  inputs=gr.Image(type="pil"),
50
  outputs=[gr.Textbox(label="Caption in English"),
51
+ gr.Textbox(label="Caption in Tamil")])
52
 
53
  # Launch the Gradio app
54
  interface.launch()