Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,8 @@ import gradio as gr
|
|
6 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
7 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
8 |
|
9 |
-
# Load MarianMT model for translation (
|
10 |
-
translation_model_name = "Helsinki-NLP/opus-mt-en-
|
11 |
translator_model = MarianMTModel.from_pretrained(translation_model_name)
|
12 |
translator_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
13 |
|
@@ -37,7 +37,7 @@ def generate_caption(image):
|
|
37 |
out = model.generate(**inputs)
|
38 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
39 |
|
40 |
-
# Translate caption to
|
41 |
translated = translator_tokenizer(caption, return_tensors="pt", padding=True)
|
42 |
translated_text = translator_model.generate(**translated)
|
43 |
translation = translator_tokenizer.decode(translated_text[0], skip_special_tokens=True)
|
@@ -48,7 +48,7 @@ def generate_caption(image):
|
|
48 |
interface = gr.Interface(fn=generate_caption,
|
49 |
inputs=gr.Image(type="pil"),
|
50 |
outputs=[gr.Textbox(label="Caption in English"),
|
51 |
-
gr.Textbox(label="Caption in
|
52 |
|
53 |
# Launch the Gradio app
|
54 |
interface.launch()
|
|
|
6 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
7 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
8 |
|
9 |
+
# Load MarianMT model for translation (English to Tamil)
|
10 |
+
translation_model_name = "Helsinki-NLP/opus-mt-en-ta"
|
11 |
translator_model = MarianMTModel.from_pretrained(translation_model_name)
|
12 |
translator_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
13 |
|
|
|
37 |
out = model.generate(**inputs)
|
38 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
39 |
|
40 |
+
# Translate caption to Tamil
|
41 |
translated = translator_tokenizer(caption, return_tensors="pt", padding=True)
|
42 |
translated_text = translator_model.generate(**translated)
|
43 |
translation = translator_tokenizer.decode(translated_text[0], skip_special_tokens=True)
|
|
|
48 |
interface = gr.Interface(fn=generate_caption,
|
49 |
inputs=gr.Image(type="pil"),
|
50 |
outputs=[gr.Textbox(label="Caption in English"),
|
51 |
+
gr.Textbox(label="Caption in Tamil")])
|
52 |
|
53 |
# Launch the Gradio app
|
54 |
interface.launch()
|