File size: 9,683 Bytes
1bcaf5a
76a3bfd
 
 
 
 
 
 
 
 
 
 
0dda3bd
76a3bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38dcf1
76a3bfd
 
 
 
 
e38dcf1
 
 
 
 
 
 
 
 
 
 
 
 
 
76a3bfd
dd7ade0
 
 
 
76a3bfd
 
 
 
 
 
 
 
 
 
fbd3675
0637d24
dbc1b2d
 
6992c96
f5894fd
dbc1b2d
cd73003
466c028
cd73003
76a3bfd
cd73003
466c028
545a4a4
76a3bfd
 
cd73003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bcaf5a
 
 
 
 
 
 
 
cd73003
76a3bfd
 
 
 
 
6992c96
76a3bfd
1301ce8
dd7ade0
 
 
c048789
 
dd7ade0
76a3bfd
1301ce8
abe371d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bcaf5a
 
 
 
 
 
abe371d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a3bfd
 
24c2d4a
 
 
 
 
 
 
76a3bfd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import json
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    TASK_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

import pdb

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()

task = ['Overall', 'Acrostic', 'Crossword', 'Cryptogram', 'Logic_Puzzle', 'Sudoku', 'Drop_Quote']
leaderboard_dict = {}
for t in task:
    leaderboard_dict[t] = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, task=t)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # pdb.set_trace()
    def highlight_max_bold(s):
        return ['font-weight: bold' if v == s.max() and v != s.min() else '' for v in s]
    num_cols = dataframe.select_dtypes(include=['float']).columns
    styler = dataframe.style.format({col: "{:.1f}" for col in num_cols})
    styler = styler.apply(highlight_max_bold, subset=num_cols)
    return gr.components.Dataframe(
        value=styler,
        headers=[c.name for c in fields(AutoEvalColumn)],
        datatype=[c.type for c in fields(AutoEvalColumn)],
        row_count=10,
        interactive=False,
        column_widths=[180, 60, 80, 80, 80, 80, 60],
    )

    # return Leaderboard(
    #     value=dataframe,
    #     datatype=[c.type for c in fields(AutoEvalColumn)],
    #     select_columns=SelectColumns(
    #         default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
    #         cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
    #         label="Select Columns to Display:",
    #     ),
    #     # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
    #     # hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
    #     # filter_columns=[
    #     #     ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
    #     #     ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
    #     #     ColumnFilter(
    #     #         AutoEvalColumn.params.name,
    #     #         type="slider",
    #     #         min=0.01,
    #     #         max=150,
    #     #         label="Select the number of parameters (B)",
    #     #     ),
    #     #     ColumnFilter(
    #     #         AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
    #     #     ),
    #     # ],
    #     # bool_checkboxgroup_label="Hide models",
    #     interactive=False,
    # )

def process_json(file):
    """ 读取用户上传的 JSON 文件并返回解析后的数据 """
    try:
        with open(file.name, 'r', encoding='utf-8') as f:
            data = json.load(f)
        return json.dumps(data, indent=4, ensure_ascii=False)  # 格式化 JSON 以便显示
    except Exception as e:
        return str(e)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_id="main-tabs", elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            # leaderboard = init_leaderboard(LEADERBOARD_DF)
            with gr.Tabs():
                for i, t in enumerate(task):
                    with gr.TabItem(t.replace("_", " "), elem_id=f"llm-benchmark-tab-table-{t}", id=i):
                        if TASK_TEXT.get(t, None):
                            gr.Markdown(TASK_TEXT[t], elem_classes="markdown-text")
                        leaderboard = init_leaderboard(leaderboard_dict[t])


        # with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")

                json_input = gr.File(label="Please upload an JSON file", type="file")
                output = gr.Textbox(label="解析后的 JSON 内容", lines=10)
                
                json_input.change(process_json, inputs=json_input, outputs=output)

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        # gr.Markdown()
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()