Spaces:
Running
Running
RizwanMunawar
commited on
Commit
Β·
783e9d0
1
Parent(s):
8ff935e
add support for video inference
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import PIL.Image as Image
|
3 |
-
|
|
|
4 |
from ultralytics import ASSETS, YOLO
|
5 |
|
|
|
6 |
model = YOLO("yolov8n.pt")
|
7 |
|
8 |
-
|
9 |
def predict_image(img, conf_threshold, iou_threshold):
|
10 |
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds."""
|
11 |
results = model.predict(
|
@@ -23,19 +24,68 @@ def predict_image(img, conf_threshold, iou_threshold):
|
|
23 |
|
24 |
return im
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
iface = gr.Interface(
|
27 |
-
fn=predict_image,
|
28 |
inputs=[
|
29 |
-
gr.
|
|
|
30 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
31 |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
|
|
32 |
],
|
33 |
-
outputs=gr.Image(type="pil", label="Result"),
|
34 |
title="Ultralytics Gradio Application π",
|
35 |
-
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.",
|
36 |
examples=[
|
37 |
-
[ASSETS / "bus.jpg", 0.25, 0.45],
|
38 |
-
[ASSETS / "zidane.jpg", 0.25, 0.45],
|
39 |
],
|
40 |
)
|
|
|
41 |
iface.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
import PIL.Image as Image
|
3 |
+
import tempfile
|
4 |
+
import cv2
|
5 |
from ultralytics import ASSETS, YOLO
|
6 |
|
7 |
+
# Load YOLOv8 model
|
8 |
model = YOLO("yolov8n.pt")
|
9 |
|
|
|
10 |
def predict_image(img, conf_threshold, iou_threshold):
|
11 |
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds."""
|
12 |
results = model.predict(
|
|
|
24 |
|
25 |
return im
|
26 |
|
27 |
+
def predict_video(video, conf_threshold, iou_threshold):
|
28 |
+
"""Predicts objects in a video using a YOLOv8 model with adjustable confidence and IOU thresholds."""
|
29 |
+
# Create a temporary file to save the processed video
|
30 |
+
temp_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
31 |
+
temp_output.close()
|
32 |
+
|
33 |
+
# Load video
|
34 |
+
cap = cv2.VideoCapture(video)
|
35 |
+
|
36 |
+
# Get video properties
|
37 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
38 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
39 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
40 |
+
|
41 |
+
# Set up VideoWriter to save output video
|
42 |
+
out = cv2.VideoWriter(temp_output.name, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
43 |
+
|
44 |
+
while cap.isOpened():
|
45 |
+
ret, frame = cap.read()
|
46 |
+
if not ret:
|
47 |
+
break
|
48 |
+
|
49 |
+
# Perform inference on each frame
|
50 |
+
results = model.predict(
|
51 |
+
source=frame,
|
52 |
+
conf=conf_threshold,
|
53 |
+
iou=iou_threshold,
|
54 |
+
show_labels=True,
|
55 |
+
show_conf=True,
|
56 |
+
imgsz=640,
|
57 |
+
)
|
58 |
+
|
59 |
+
# Draw the results on the frame
|
60 |
+
for r in results:
|
61 |
+
frame = r.plot()
|
62 |
+
|
63 |
+
# Write the frame to the output video
|
64 |
+
out.write(frame)
|
65 |
+
|
66 |
+
# Release resources
|
67 |
+
cap.release()
|
68 |
+
out.release()
|
69 |
+
|
70 |
+
return temp_output.name
|
71 |
+
|
72 |
+
# Create a Gradio interface with support for both images and videos
|
73 |
iface = gr.Interface(
|
74 |
+
fn=lambda img, conf_threshold, iou_threshold, is_video: predict_video(img, conf_threshold, iou_threshold) if is_video else predict_image(img, conf_threshold, iou_threshold),
|
75 |
inputs=[
|
76 |
+
gr.Video(type="file", optional=True, label="Upload Video"),
|
77 |
+
gr.Image(type="pil", optional=True, label="Upload Image"),
|
78 |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
79 |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
80 |
+
gr.Checkbox(label="Is Video?", default=False),
|
81 |
],
|
82 |
+
outputs=gr.Image(type="pil", label="Result") if not gr.Checkbox else gr.Video(type="file", label="Result"),
|
83 |
title="Ultralytics Gradio Application π",
|
84 |
+
description="Upload images or videos for inference. The Ultralytics YOLOv8n model is used by default.",
|
85 |
examples=[
|
86 |
+
[ASSETS / "bus.jpg", 0.25, 0.45, False],
|
87 |
+
[ASSETS / "zidane.jpg", 0.25, 0.45, False],
|
88 |
],
|
89 |
)
|
90 |
+
|
91 |
iface.launch(share=True)
|