LivePortrait-animal / src /config /inference_config.py
abreza's picture
init
469635f
# coding: utf-8
"""
config dataclass used for inference
"""
import cv2
from numpy import ndarray
import pickle as pkl
from dataclasses import dataclass, field
from typing import Literal, Tuple
from .base_config import PrintableConfig, make_abs_path
def load_lip_array():
with open(make_abs_path('../utils/resources/lip_array.pkl'), 'rb') as f:
return pkl.load(f)
@dataclass(repr=False) # use repr from PrintableConfig
class InferenceConfig(PrintableConfig):
# HUMAN MODEL CONFIG, NOT EXPORTED PARAMS
models_config: str = make_abs_path('./models.yaml') # portrait animation config
checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
checkpoint_G: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G
checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
# ANIMAL MODEL CONFIG, NOT EXPORTED PARAMS
# version_animals = "" # old version
version_animals = "_v1.1" # new (v1.1) version
checkpoint_F_animal: str = make_abs_path(f'../../pretrained_weights/liveportrait_animals/base_models{version_animals}/appearance_feature_extractor.pth') # path to checkpoint of F
checkpoint_M_animal: str = make_abs_path(f'../../pretrained_weights/liveportrait_animals/base_models{version_animals}/motion_extractor.pth') # path to checkpoint pf M
checkpoint_G_animal: str = make_abs_path(f'../../pretrained_weights/liveportrait_animals/base_models{version_animals}/spade_generator.pth') # path to checkpoint of G
checkpoint_W_animal: str = make_abs_path(f'../../pretrained_weights/liveportrait_animals/base_models{version_animals}/warping_module.pth') # path to checkpoint of W
checkpoint_S_animal: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip, NOTE: use human temporarily!
# EXPORTED PARAMS
flag_use_half_precision: bool = True
flag_crop_driving_video: bool = False
device_id: int = 0
flag_normalize_lip: bool = True
flag_source_video_eye_retargeting: bool = False
flag_eye_retargeting: bool = False
flag_lip_retargeting: bool = False
flag_stitching: bool = True
flag_relative_motion: bool = True
flag_pasteback: bool = True
flag_do_crop: bool = True
flag_do_rot: bool = True
flag_force_cpu: bool = False
flag_do_torch_compile: bool = False
driving_option: str = "pose-friendly" # "expression-friendly" or "pose-friendly"
driving_multiplier: float = 1.0
driving_smooth_observation_variance: float = 3e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
source_max_dim: int = 1280 # the max dim of height and width of source image or video
source_division: int = 2 # make sure the height and width of source image or video can be divided by this number
animation_region: Literal["exp", "pose", "lip", "eyes", "all"] = "all" # the region where the animation was performed, "exp" means the expression, "pose" means the head pose
# NOT EXPORTED PARAMS
lip_normalize_threshold: float = 0.03 # threshold for flag_normalize_lip
source_video_eye_retargeting_threshold: float = 0.18 # threshold for eyes retargeting if the input is a source video
anchor_frame: int = 0 # TO IMPLEMENT
input_shape: Tuple[int, int] = (256, 256) # input shape
output_format: Literal['mp4', 'gif'] = 'mp4' # output video format
crf: int = 15 # crf for output video
output_fps: int = 25 # default output fps
mask_crop: ndarray = field(default_factory=lambda: cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR))
lip_array: ndarray = field(default_factory=load_lip_array)
size_gif: int = 256 # default gif size, TO IMPLEMENT