Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,249 +1,666 @@
|
|
1 |
# coding: utf-8
|
2 |
|
3 |
"""
|
4 |
-
|
5 |
"""
|
6 |
|
|
|
7 |
import os
|
8 |
-
import
|
9 |
-
import
|
10 |
import gradio as gr
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
from
|
15 |
-
from
|
16 |
-
from
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
args
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
]
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
]
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# coding: utf-8
|
2 |
|
3 |
"""
|
4 |
+
Pipeline for gradio
|
5 |
"""
|
6 |
|
7 |
+
import os.path as osp
|
8 |
import os
|
9 |
+
import cv2
|
10 |
+
from rich.progress import track
|
11 |
import gradio as gr
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
|
15 |
+
from .config.argument_config import ArgumentConfig
|
16 |
+
from .live_portrait_pipeline import LivePortraitPipeline
|
17 |
+
from .live_portrait_pipeline_animal import LivePortraitPipelineAnimal
|
18 |
+
from .utils.io import load_img_online, load_video, resize_to_limit
|
19 |
+
from .utils.filter import smooth
|
20 |
+
from .utils.rprint import rlog as log
|
21 |
+
from .utils.crop import prepare_paste_back, paste_back
|
22 |
+
from .utils.camera import get_rotation_matrix
|
23 |
+
from .utils.video import get_fps, has_audio_stream, concat_frames, images2video, add_audio_to_video
|
24 |
+
from .utils.helper import is_square_video, mkdir, dct2device, basename
|
25 |
+
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
|
26 |
+
|
27 |
+
|
28 |
+
def update_args(args, user_args):
|
29 |
+
"""update the args according to user inputs
|
30 |
+
"""
|
31 |
+
for k, v in user_args.items():
|
32 |
+
if hasattr(args, k):
|
33 |
+
setattr(args, k, v)
|
34 |
+
return args
|
35 |
+
|
36 |
+
|
37 |
+
class GradioPipeline(LivePortraitPipeline):
|
38 |
+
"""gradio for human
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
|
42 |
+
super().__init__(inference_cfg, crop_cfg)
|
43 |
+
# self.live_portrait_wrapper = self.live_portrait_wrapper
|
44 |
+
self.args = args
|
45 |
+
|
46 |
+
@torch.no_grad()
|
47 |
+
def update_delta_new_eyeball_direction(self, eyeball_direction_x, eyeball_direction_y, delta_new, **kwargs):
|
48 |
+
if eyeball_direction_x > 0:
|
49 |
+
delta_new[0, 11, 0] += eyeball_direction_x * 0.0007
|
50 |
+
delta_new[0, 15, 0] += eyeball_direction_x * 0.001
|
51 |
+
else:
|
52 |
+
delta_new[0, 11, 0] += eyeball_direction_x * 0.001
|
53 |
+
delta_new[0, 15, 0] += eyeball_direction_x * 0.0007
|
54 |
+
|
55 |
+
delta_new[0, 11, 1] += eyeball_direction_y * -0.001
|
56 |
+
delta_new[0, 15, 1] += eyeball_direction_y * -0.001
|
57 |
+
blink = -eyeball_direction_y / 2.
|
58 |
+
|
59 |
+
delta_new[0, 11, 1] += blink * -0.001
|
60 |
+
delta_new[0, 13, 1] += blink * 0.0003
|
61 |
+
delta_new[0, 15, 1] += blink * -0.001
|
62 |
+
delta_new[0, 16, 1] += blink * 0.0003
|
63 |
+
|
64 |
+
return delta_new
|
65 |
+
|
66 |
+
@torch.no_grad()
|
67 |
+
def update_delta_new_smile(self, smile, delta_new, **kwargs):
|
68 |
+
delta_new[0, 20, 1] += smile * -0.01
|
69 |
+
delta_new[0, 14, 1] += smile * -0.02
|
70 |
+
delta_new[0, 17, 1] += smile * 0.0065
|
71 |
+
delta_new[0, 17, 2] += smile * 0.003
|
72 |
+
delta_new[0, 13, 1] += smile * -0.00275
|
73 |
+
delta_new[0, 16, 1] += smile * -0.00275
|
74 |
+
delta_new[0, 3, 1] += smile * -0.0035
|
75 |
+
delta_new[0, 7, 1] += smile * -0.0035
|
76 |
+
|
77 |
+
return delta_new
|
78 |
+
|
79 |
+
@torch.no_grad()
|
80 |
+
def update_delta_new_wink(self, wink, delta_new, **kwargs):
|
81 |
+
delta_new[0, 11, 1] += wink * 0.001
|
82 |
+
delta_new[0, 13, 1] += wink * -0.0003
|
83 |
+
delta_new[0, 17, 0] += wink * 0.0003
|
84 |
+
delta_new[0, 17, 1] += wink * 0.0003
|
85 |
+
delta_new[0, 3, 1] += wink * -0.0003
|
86 |
+
|
87 |
+
return delta_new
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def update_delta_new_eyebrow(self, eyebrow, delta_new, **kwargs):
|
91 |
+
if eyebrow > 0:
|
92 |
+
delta_new[0, 1, 1] += eyebrow * 0.001
|
93 |
+
delta_new[0, 2, 1] += eyebrow * -0.001
|
94 |
+
else:
|
95 |
+
delta_new[0, 1, 0] += eyebrow * -0.001
|
96 |
+
delta_new[0, 2, 0] += eyebrow * 0.001
|
97 |
+
delta_new[0, 1, 1] += eyebrow * 0.0003
|
98 |
+
delta_new[0, 2, 1] += eyebrow * -0.0003
|
99 |
+
return delta_new
|
100 |
+
|
101 |
+
@torch.no_grad()
|
102 |
+
def update_delta_new_lip_variation_zero(self, lip_variation_zero, delta_new, **kwargs):
|
103 |
+
delta_new[0, 19, 0] += lip_variation_zero
|
104 |
+
|
105 |
+
return delta_new
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def update_delta_new_lip_variation_one(self, lip_variation_one, delta_new, **kwargs):
|
109 |
+
delta_new[0, 14, 1] += lip_variation_one * 0.001
|
110 |
+
delta_new[0, 3, 1] += lip_variation_one * -0.0005
|
111 |
+
delta_new[0, 7, 1] += lip_variation_one * -0.0005
|
112 |
+
delta_new[0, 17, 2] += lip_variation_one * -0.0005
|
113 |
+
|
114 |
+
return delta_new
|
115 |
+
|
116 |
+
@torch.no_grad()
|
117 |
+
def update_delta_new_lip_variation_two(self, lip_variation_two, delta_new, **kwargs):
|
118 |
+
delta_new[0, 20, 2] += lip_variation_two * -0.001
|
119 |
+
delta_new[0, 20, 1] += lip_variation_two * -0.001
|
120 |
+
delta_new[0, 14, 1] += lip_variation_two * -0.001
|
121 |
+
|
122 |
+
return delta_new
|
123 |
+
|
124 |
+
@torch.no_grad()
|
125 |
+
def update_delta_new_lip_variation_three(self, lip_variation_three, delta_new, **kwargs):
|
126 |
+
delta_new[0, 19, 1] += lip_variation_three * 0.001
|
127 |
+
delta_new[0, 19, 2] += lip_variation_three * 0.0001
|
128 |
+
delta_new[0, 17, 1] += lip_variation_three * -0.0001
|
129 |
+
|
130 |
+
return delta_new
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def update_delta_new_mov_x(self, mov_x, delta_new, **kwargs):
|
134 |
+
delta_new[0, 5, 0] += mov_x
|
135 |
+
|
136 |
+
return delta_new
|
137 |
+
|
138 |
+
@torch.no_grad()
|
139 |
+
def update_delta_new_mov_y(self, mov_y, delta_new, **kwargs):
|
140 |
+
delta_new[0, 5, 1] += mov_y
|
141 |
+
|
142 |
+
return delta_new
|
143 |
+
|
144 |
+
@torch.no_grad()
|
145 |
+
def execute_video(
|
146 |
+
self,
|
147 |
+
input_source_image_path=None,
|
148 |
+
input_source_video_path=None,
|
149 |
+
input_driving_video_path=None,
|
150 |
+
input_driving_image_path=None,
|
151 |
+
input_driving_video_pickle_path=None,
|
152 |
+
flag_normalize_lip=False,
|
153 |
+
flag_relative_input=True,
|
154 |
+
flag_do_crop_input=True,
|
155 |
+
flag_remap_input=True,
|
156 |
+
flag_stitching_input=True,
|
157 |
+
animation_region="all",
|
158 |
+
driving_option_input="pose-friendly",
|
159 |
+
driving_multiplier=1.0,
|
160 |
+
flag_crop_driving_video_input=True,
|
161 |
+
# flag_video_editing_head_rotation=False,
|
162 |
+
scale=2.3,
|
163 |
+
vx_ratio=0.0,
|
164 |
+
vy_ratio=-0.125,
|
165 |
+
scale_crop_driving_video=2.2,
|
166 |
+
vx_ratio_crop_driving_video=0.0,
|
167 |
+
vy_ratio_crop_driving_video=-0.1,
|
168 |
+
driving_smooth_observation_variance=3e-7,
|
169 |
+
tab_selection=None,
|
170 |
+
v_tab_selection=None
|
171 |
+
):
|
172 |
+
""" for video-driven portrait animation or video editing
|
173 |
+
"""
|
174 |
+
if tab_selection == 'Image':
|
175 |
+
input_source_path = input_source_image_path
|
176 |
+
elif tab_selection == 'Video':
|
177 |
+
input_source_path = input_source_video_path
|
178 |
+
else:
|
179 |
+
input_source_path = input_source_image_path
|
180 |
+
|
181 |
+
if v_tab_selection == 'Video':
|
182 |
+
input_driving_path = input_driving_video_path
|
183 |
+
elif v_tab_selection == 'Image':
|
184 |
+
input_driving_path = input_driving_image_path
|
185 |
+
elif v_tab_selection == 'Pickle':
|
186 |
+
input_driving_path = input_driving_video_pickle_path
|
187 |
+
else:
|
188 |
+
input_driving_path = input_driving_video_path
|
189 |
+
|
190 |
+
if input_source_path is not None and input_driving_path is not None:
|
191 |
+
if osp.exists(input_driving_path) and v_tab_selection == 'Video' and not flag_crop_driving_video_input and is_square_video(input_driving_path) is False:
|
192 |
+
flag_crop_driving_video_input = True
|
193 |
+
log("The driving video is not square, it will be cropped to square automatically.")
|
194 |
+
gr.Info("The driving video is not square, it will be cropped to square automatically.", duration=2)
|
195 |
+
|
196 |
+
args_user = {
|
197 |
+
'source': input_source_path,
|
198 |
+
'driving': input_driving_path,
|
199 |
+
'flag_normalize_lip' : flag_normalize_lip,
|
200 |
+
'flag_relative_motion': flag_relative_input,
|
201 |
+
'flag_do_crop': flag_do_crop_input,
|
202 |
+
'flag_pasteback': flag_remap_input,
|
203 |
+
'flag_stitching': flag_stitching_input,
|
204 |
+
'animation_region': animation_region,
|
205 |
+
'driving_option': driving_option_input,
|
206 |
+
'driving_multiplier': driving_multiplier,
|
207 |
+
'flag_crop_driving_video': flag_crop_driving_video_input,
|
208 |
+
'scale': scale,
|
209 |
+
'vx_ratio': vx_ratio,
|
210 |
+
'vy_ratio': vy_ratio,
|
211 |
+
'scale_crop_driving_video': scale_crop_driving_video,
|
212 |
+
'vx_ratio_crop_driving_video': vx_ratio_crop_driving_video,
|
213 |
+
'vy_ratio_crop_driving_video': vy_ratio_crop_driving_video,
|
214 |
+
'driving_smooth_observation_variance': driving_smooth_observation_variance,
|
215 |
+
}
|
216 |
+
# update config from user input
|
217 |
+
self.args = update_args(self.args, args_user)
|
218 |
+
self.live_portrait_wrapper.update_config(self.args.__dict__)
|
219 |
+
self.cropper.update_config(self.args.__dict__)
|
220 |
+
|
221 |
+
output_path, output_path_concat = self.execute(self.args)
|
222 |
+
gr.Info("Run successfully!", duration=2)
|
223 |
+
if output_path.endswith(".jpg"):
|
224 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), output_path, gr.update(visible=True), output_path_concat, gr.update(visible=True)
|
225 |
+
else:
|
226 |
+
return output_path, gr.update(visible=True), output_path_concat, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
227 |
+
else:
|
228 |
+
raise gr.Error("Please upload the source portrait or source video, and driving video 🤗🤗🤗", duration=5)
|
229 |
+
|
230 |
+
@torch.no_grad()
|
231 |
+
def execute_image_retargeting(
|
232 |
+
self,
|
233 |
+
input_eye_ratio: float,
|
234 |
+
input_lip_ratio: float,
|
235 |
+
input_head_pitch_variation: float,
|
236 |
+
input_head_yaw_variation: float,
|
237 |
+
input_head_roll_variation: float,
|
238 |
+
mov_x: float,
|
239 |
+
mov_y: float,
|
240 |
+
mov_z: float,
|
241 |
+
lip_variation_zero: float,
|
242 |
+
lip_variation_one: float,
|
243 |
+
lip_variation_two: float,
|
244 |
+
lip_variation_three: float,
|
245 |
+
smile: float,
|
246 |
+
wink: float,
|
247 |
+
eyebrow: float,
|
248 |
+
eyeball_direction_x: float,
|
249 |
+
eyeball_direction_y: float,
|
250 |
+
input_image,
|
251 |
+
retargeting_source_scale: float,
|
252 |
+
flag_stitching_retargeting_input=True,
|
253 |
+
flag_do_crop_input_retargeting_image=True):
|
254 |
+
""" for single image retargeting
|
255 |
+
"""
|
256 |
+
if input_head_pitch_variation is None or input_head_yaw_variation is None or input_head_roll_variation is None:
|
257 |
+
raise gr.Error("Invalid relative pose input 💥!", duration=5)
|
258 |
+
# disposable feature
|
259 |
+
f_s_user, x_s_user, R_s_user, R_d_user, x_s_info, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
|
260 |
+
self.prepare_retargeting_image(
|
261 |
+
input_image, input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation, retargeting_source_scale, flag_do_crop=flag_do_crop_input_retargeting_image)
|
262 |
+
|
263 |
+
if input_eye_ratio is None or input_lip_ratio is None:
|
264 |
+
raise gr.Error("Invalid ratio input 💥!", duration=5)
|
265 |
+
else:
|
266 |
+
device = self.live_portrait_wrapper.device
|
267 |
+
# inference_cfg = self.live_portrait_wrapper.inference_cfg
|
268 |
+
x_s_user = x_s_user.to(device)
|
269 |
+
f_s_user = f_s_user.to(device)
|
270 |
+
R_s_user = R_s_user.to(device)
|
271 |
+
R_d_user = R_d_user.to(device)
|
272 |
+
mov_x = torch.tensor(mov_x).to(device)
|
273 |
+
mov_y = torch.tensor(mov_y).to(device)
|
274 |
+
mov_z = torch.tensor(mov_z).to(device)
|
275 |
+
eyeball_direction_x = torch.tensor(eyeball_direction_x).to(device)
|
276 |
+
eyeball_direction_y = torch.tensor(eyeball_direction_y).to(device)
|
277 |
+
smile = torch.tensor(smile).to(device)
|
278 |
+
wink = torch.tensor(wink).to(device)
|
279 |
+
eyebrow = torch.tensor(eyebrow).to(device)
|
280 |
+
lip_variation_zero = torch.tensor(lip_variation_zero).to(device)
|
281 |
+
lip_variation_one = torch.tensor(lip_variation_one).to(device)
|
282 |
+
lip_variation_two = torch.tensor(lip_variation_two).to(device)
|
283 |
+
lip_variation_three = torch.tensor(lip_variation_three).to(device)
|
284 |
+
|
285 |
+
x_c_s = x_s_info['kp'].to(device)
|
286 |
+
delta_new = x_s_info['exp'].to(device)
|
287 |
+
scale_new = x_s_info['scale'].to(device)
|
288 |
+
t_new = x_s_info['t'].to(device)
|
289 |
+
R_d_new = (R_d_user @ R_s_user.permute(0, 2, 1)) @ R_s_user
|
290 |
+
|
291 |
+
if eyeball_direction_x != 0 or eyeball_direction_y != 0:
|
292 |
+
delta_new = self.update_delta_new_eyeball_direction(eyeball_direction_x, eyeball_direction_y, delta_new)
|
293 |
+
if smile != 0:
|
294 |
+
delta_new = self.update_delta_new_smile(smile, delta_new)
|
295 |
+
if wink != 0:
|
296 |
+
delta_new = self.update_delta_new_wink(wink, delta_new)
|
297 |
+
if eyebrow != 0:
|
298 |
+
delta_new = self.update_delta_new_eyebrow(eyebrow, delta_new)
|
299 |
+
if lip_variation_zero != 0:
|
300 |
+
delta_new = self.update_delta_new_lip_variation_zero(lip_variation_zero, delta_new)
|
301 |
+
if lip_variation_one != 0:
|
302 |
+
delta_new = self.update_delta_new_lip_variation_one(lip_variation_one, delta_new)
|
303 |
+
if lip_variation_two != 0:
|
304 |
+
delta_new = self.update_delta_new_lip_variation_two(lip_variation_two, delta_new)
|
305 |
+
if lip_variation_three != 0:
|
306 |
+
delta_new = self.update_delta_new_lip_variation_three(lip_variation_three, delta_new)
|
307 |
+
if mov_x != 0:
|
308 |
+
delta_new = self.update_delta_new_mov_x(-mov_x, delta_new)
|
309 |
+
if mov_y !=0 :
|
310 |
+
delta_new = self.update_delta_new_mov_y(mov_y, delta_new)
|
311 |
+
|
312 |
+
x_d_new = mov_z * scale_new * (x_c_s @ R_d_new + delta_new) + t_new
|
313 |
+
eyes_delta, lip_delta = None, None
|
314 |
+
if input_eye_ratio != self.source_eye_ratio:
|
315 |
+
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[float(input_eye_ratio)]], source_lmk_user)
|
316 |
+
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
|
317 |
+
if input_lip_ratio != self.source_lip_ratio:
|
318 |
+
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[float(input_lip_ratio)]], source_lmk_user)
|
319 |
+
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
|
320 |
+
print(lip_delta)
|
321 |
+
x_d_new = x_d_new + \
|
322 |
+
(eyes_delta if eyes_delta is not None else 0) + \
|
323 |
+
(lip_delta if lip_delta is not None else 0)
|
324 |
+
|
325 |
+
if flag_stitching_retargeting_input:
|
326 |
+
x_d_new = self.live_portrait_wrapper.stitching(x_s_user, x_d_new)
|
327 |
+
out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
|
328 |
+
out = self.live_portrait_wrapper.parse_output(out['out'])[0]
|
329 |
+
if flag_do_crop_input_retargeting_image:
|
330 |
+
out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
|
331 |
+
else:
|
332 |
+
out_to_ori_blend = out
|
333 |
+
return out, out_to_ori_blend
|
334 |
+
|
335 |
+
@torch.no_grad()
|
336 |
+
def prepare_retargeting_image(
|
337 |
+
self,
|
338 |
+
input_image,
|
339 |
+
input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation,
|
340 |
+
retargeting_source_scale,
|
341 |
+
flag_do_crop=True):
|
342 |
+
""" for single image retargeting
|
343 |
+
"""
|
344 |
+
if input_image is not None:
|
345 |
+
# gr.Info("Upload successfully!", duration=2)
|
346 |
+
args_user = {'scale': retargeting_source_scale}
|
347 |
+
self.args = update_args(self.args, args_user)
|
348 |
+
self.cropper.update_config(self.args.__dict__)
|
349 |
+
inference_cfg = self.live_portrait_wrapper.inference_cfg
|
350 |
+
######## process source portrait ########
|
351 |
+
img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=2)
|
352 |
+
if flag_do_crop:
|
353 |
+
crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
|
354 |
+
I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
|
355 |
+
source_lmk_user = crop_info['lmk_crop']
|
356 |
+
crop_M_c2o = crop_info['M_c2o']
|
357 |
+
mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
|
358 |
+
else:
|
359 |
+
I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
|
360 |
+
source_lmk_user = self.cropper.calc_lmk_from_cropped_image(img_rgb)
|
361 |
+
crop_M_c2o = None
|
362 |
+
mask_ori = None
|
363 |
+
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
|
364 |
+
x_d_info_user_pitch = x_s_info['pitch'] + input_head_pitch_variation
|
365 |
+
x_d_info_user_yaw = x_s_info['yaw'] + input_head_yaw_variation
|
366 |
+
x_d_info_user_roll = x_s_info['roll'] + input_head_roll_variation
|
367 |
+
R_s_user = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
|
368 |
+
R_d_user = get_rotation_matrix(x_d_info_user_pitch, x_d_info_user_yaw, x_d_info_user_roll)
|
369 |
+
############################################
|
370 |
+
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
|
371 |
+
x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
|
372 |
+
return f_s_user, x_s_user, R_s_user, R_d_user, x_s_info, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
|
373 |
+
else:
|
374 |
+
raise gr.Error("Please upload a source portrait as the retargeting input 🤗🤗🤗", duration=5)
|
375 |
+
|
376 |
+
@torch.no_grad()
|
377 |
+
def init_retargeting_image(self, retargeting_source_scale: float, source_eye_ratio: float, source_lip_ratio:float, input_image = None):
|
378 |
+
""" initialize the retargeting slider
|
379 |
+
"""
|
380 |
+
if input_image != None:
|
381 |
+
args_user = {'scale': retargeting_source_scale}
|
382 |
+
self.args = update_args(self.args, args_user)
|
383 |
+
self.cropper.update_config(self.args.__dict__)
|
384 |
+
# inference_cfg = self.live_portrait_wrapper.inference_cfg
|
385 |
+
######## process source portrait ########
|
386 |
+
img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16)
|
387 |
+
log(f"Load source image from {input_image}.")
|
388 |
+
crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
|
389 |
+
if crop_info is None:
|
390 |
+
raise gr.Error("Source portrait NO face detected", duration=2)
|
391 |
+
source_eye_ratio = calc_eye_close_ratio(crop_info['lmk_crop'][None])
|
392 |
+
source_lip_ratio = calc_lip_close_ratio(crop_info['lmk_crop'][None])
|
393 |
+
self.source_eye_ratio = round(float(source_eye_ratio.mean()), 2)
|
394 |
+
self.source_lip_ratio = round(float(source_lip_ratio[0][0]), 2)
|
395 |
+
log("Calculating eyes-open and lip-open ratios successfully!")
|
396 |
+
return self.source_eye_ratio, self.source_lip_ratio
|
397 |
+
else:
|
398 |
+
return source_eye_ratio, source_lip_ratio
|
399 |
+
|
400 |
+
@torch.no_grad()
|
401 |
+
def execute_video_retargeting(self, input_lip_ratio: float, input_video, retargeting_source_scale: float, driving_smooth_observation_variance_retargeting: float, video_retargeting_silence=False, flag_do_crop_input_retargeting_video=True):
|
402 |
+
""" retargeting the lip-open ratio of each source frame
|
403 |
+
"""
|
404 |
+
# disposable feature
|
405 |
+
device = self.live_portrait_wrapper.device
|
406 |
+
|
407 |
+
if not video_retargeting_silence:
|
408 |
+
f_s_user_lst, x_s_user_lst, source_lmk_crop_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, lip_delta_retargeting_lst_smooth, source_fps, n_frames = \
|
409 |
+
self.prepare_retargeting_video(input_video, retargeting_source_scale, device, input_lip_ratio, driving_smooth_observation_variance_retargeting, flag_do_crop=flag_do_crop_input_retargeting_video)
|
410 |
+
if input_lip_ratio is None:
|
411 |
+
raise gr.Error("Invalid ratio input 💥!", duration=5)
|
412 |
+
else:
|
413 |
+
inference_cfg = self.live_portrait_wrapper.inference_cfg
|
414 |
+
|
415 |
+
I_p_pstbk_lst = None
|
416 |
+
if flag_do_crop_input_retargeting_video:
|
417 |
+
I_p_pstbk_lst = []
|
418 |
+
I_p_lst = []
|
419 |
+
for i in track(range(n_frames), description='Retargeting video...', total=n_frames):
|
420 |
+
x_s_user_i = x_s_user_lst[i].to(device)
|
421 |
+
f_s_user_i = f_s_user_lst[i].to(device)
|
422 |
+
|
423 |
+
lip_delta_retargeting = lip_delta_retargeting_lst_smooth[i]
|
424 |
+
x_d_i_new = x_s_user_i + lip_delta_retargeting
|
425 |
+
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_user_i, x_d_i_new)
|
426 |
+
out = self.live_portrait_wrapper.warp_decode(f_s_user_i, x_s_user_i, x_d_i_new)
|
427 |
+
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
|
428 |
+
I_p_lst.append(I_p_i)
|
429 |
+
|
430 |
+
if flag_do_crop_input_retargeting_video:
|
431 |
+
I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_lst[i])
|
432 |
+
I_p_pstbk_lst.append(I_p_pstbk)
|
433 |
+
else:
|
434 |
+
inference_cfg = self.live_portrait_wrapper.inference_cfg
|
435 |
+
f_s_user_lst, x_s_user_lst, x_d_i_new_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, source_fps, n_frames = \
|
436 |
+
self.prepare_video_lip_silence(input_video, device, flag_do_crop=flag_do_crop_input_retargeting_video)
|
437 |
+
|
438 |
+
I_p_pstbk_lst = None
|
439 |
+
if flag_do_crop_input_retargeting_video:
|
440 |
+
I_p_pstbk_lst = []
|
441 |
+
I_p_lst = []
|
442 |
+
for i in track(range(n_frames), description='Silencing lip...', total=n_frames):
|
443 |
+
x_s_user_i = x_s_user_lst[i].to(device)
|
444 |
+
f_s_user_i = f_s_user_lst[i].to(device)
|
445 |
+
x_d_i_new = x_d_i_new_lst[i]
|
446 |
+
x_d_i_new = self.live_portrait_wrapper.stitching(x_s_user_i, x_d_i_new)
|
447 |
+
out = self.live_portrait_wrapper.warp_decode(f_s_user_i, x_s_user_i, x_d_i_new)
|
448 |
+
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
|
449 |
+
I_p_lst.append(I_p_i)
|
450 |
+
|
451 |
+
if flag_do_crop_input_retargeting_video:
|
452 |
+
I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_lst[i])
|
453 |
+
I_p_pstbk_lst.append(I_p_pstbk)
|
454 |
+
|
455 |
+
mkdir(self.args.output_dir)
|
456 |
+
flag_source_has_audio = has_audio_stream(input_video)
|
457 |
+
|
458 |
+
######### build the final concatenation result #########
|
459 |
+
# source frame | generation
|
460 |
+
frames_concatenated = concat_frames(driving_image_lst=None, source_image_lst=img_crop_256x256_lst, I_p_lst=I_p_lst)
|
461 |
+
wfp_concat = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_concat.mp4')
|
462 |
+
images2video(frames_concatenated, wfp=wfp_concat, fps=source_fps)
|
463 |
+
|
464 |
+
if flag_source_has_audio:
|
465 |
+
# final result with concatenation
|
466 |
+
wfp_concat_with_audio = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_concat_with_audio.mp4')
|
467 |
+
add_audio_to_video(wfp_concat, input_video, wfp_concat_with_audio)
|
468 |
+
os.replace(wfp_concat_with_audio, wfp_concat)
|
469 |
+
log(f"Replace {wfp_concat_with_audio} with {wfp_concat}")
|
470 |
+
|
471 |
+
# save the animated result
|
472 |
+
wfp = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting.mp4')
|
473 |
+
if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
|
474 |
+
images2video(I_p_pstbk_lst, wfp=wfp, fps=source_fps)
|
475 |
+
else:
|
476 |
+
images2video(I_p_lst, wfp=wfp, fps=source_fps)
|
477 |
+
|
478 |
+
######### build the final result #########
|
479 |
+
if flag_source_has_audio:
|
480 |
+
wfp_with_audio = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_with_audio.mp4')
|
481 |
+
add_audio_to_video(wfp, input_video, wfp_with_audio)
|
482 |
+
os.replace(wfp_with_audio, wfp)
|
483 |
+
log(f"Replace {wfp_with_audio} with {wfp}")
|
484 |
+
gr.Info("Run successfully!", duration=2)
|
485 |
+
return wfp_concat, wfp
|
486 |
+
|
487 |
+
@torch.no_grad()
|
488 |
+
def prepare_retargeting_video(self, input_video, retargeting_source_scale, device, input_lip_ratio, driving_smooth_observation_variance_retargeting, flag_do_crop=True):
|
489 |
+
""" for video retargeting
|
490 |
+
"""
|
491 |
+
if input_video is not None:
|
492 |
+
# gr.Info("Upload successfully!", duration=2)
|
493 |
+
args_user = {'scale': retargeting_source_scale}
|
494 |
+
self.args = update_args(self.args, args_user)
|
495 |
+
self.cropper.update_config(self.args.__dict__)
|
496 |
+
inference_cfg = self.live_portrait_wrapper.inference_cfg
|
497 |
+
######## process source video ########
|
498 |
+
source_rgb_lst = load_video(input_video)
|
499 |
+
source_rgb_lst = [resize_to_limit(img, inference_cfg.source_max_dim, inference_cfg.source_division) for img in source_rgb_lst]
|
500 |
+
source_fps = int(get_fps(input_video))
|
501 |
+
n_frames = len(source_rgb_lst)
|
502 |
+
log(f"Load source video from {input_video}. FPS is {source_fps}")
|
503 |
+
|
504 |
+
if flag_do_crop:
|
505 |
+
ret_s = self.cropper.crop_source_video(source_rgb_lst, self.cropper.crop_cfg)
|
506 |
+
log(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
|
507 |
+
if len(ret_s["frame_crop_lst"]) != n_frames:
|
508 |
+
n_frames = min(len(source_rgb_lst), len(ret_s["frame_crop_lst"]))
|
509 |
+
img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
|
510 |
+
mask_ori_lst = [prepare_paste_back(inference_cfg.mask_crop, source_M_c2o, dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0])) for source_M_c2o in source_M_c2o_lst]
|
511 |
+
else:
|
512 |
+
source_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_rgb_lst)
|
513 |
+
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_rgb_lst] # force to resize to 256x256
|
514 |
+
source_M_c2o_lst, mask_ori_lst = None, None
|
515 |
+
|
516 |
+
c_s_eyes_lst, c_s_lip_lst = self.live_portrait_wrapper.calc_ratio(source_lmk_crop_lst)
|
517 |
+
# save the motion template
|
518 |
+
I_s_lst = self.live_portrait_wrapper.prepare_videos(img_crop_256x256_lst)
|
519 |
+
source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=source_fps)
|
520 |
+
|
521 |
+
c_d_lip_retargeting = [input_lip_ratio]
|
522 |
+
f_s_user_lst, x_s_user_lst, lip_delta_retargeting_lst = [], [], []
|
523 |
+
for i in track(range(n_frames), description='Preparing retargeting video...', total=n_frames):
|
524 |
+
x_s_info = source_template_dct['motion'][i]
|
525 |
+
x_s_info = dct2device(x_s_info, device)
|
526 |
+
x_s_user = x_s_info['x_s']
|
527 |
+
|
528 |
+
source_lmk = source_lmk_crop_lst[i]
|
529 |
+
img_crop_256x256 = img_crop_256x256_lst[i]
|
530 |
+
I_s = I_s_lst[i]
|
531 |
+
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
|
532 |
+
|
533 |
+
combined_lip_ratio_tensor_retargeting = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_retargeting, source_lmk)
|
534 |
+
lip_delta_retargeting = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor_retargeting)
|
535 |
+
f_s_user_lst.append(f_s_user); x_s_user_lst.append(x_s_user); lip_delta_retargeting_lst.append(lip_delta_retargeting.cpu().numpy().astype(np.float32))
|
536 |
+
lip_delta_retargeting_lst_smooth = smooth(lip_delta_retargeting_lst, lip_delta_retargeting_lst[0].shape, device, driving_smooth_observation_variance_retargeting)
|
537 |
+
|
538 |
+
return f_s_user_lst, x_s_user_lst, source_lmk_crop_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, lip_delta_retargeting_lst_smooth, source_fps, n_frames
|
539 |
+
else:
|
540 |
+
# when press the clear button, go here
|
541 |
+
raise gr.Error("Please upload a source video as the retargeting input 🤗🤗🤗", duration=5)
|
542 |
+
|
543 |
+
@torch.no_grad()
|
544 |
+
def prepare_video_lip_silence(self, input_video, device, flag_do_crop=True):
|
545 |
+
""" for keeping lips in the source video silent
|
546 |
+
"""
|
547 |
+
if input_video is not None:
|
548 |
+
inference_cfg = self.live_portrait_wrapper.inference_cfg
|
549 |
+
######## process source video ########
|
550 |
+
source_rgb_lst = load_video(input_video)
|
551 |
+
source_rgb_lst = [resize_to_limit(img, inference_cfg.source_max_dim, inference_cfg.source_division) for img in source_rgb_lst]
|
552 |
+
source_fps = int(get_fps(input_video))
|
553 |
+
n_frames = len(source_rgb_lst)
|
554 |
+
log(f"Load source video from {input_video}. FPS is {source_fps}")
|
555 |
+
|
556 |
+
if flag_do_crop:
|
557 |
+
ret_s = self.cropper.crop_source_video(source_rgb_lst, self.cropper.crop_cfg)
|
558 |
+
log(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
|
559 |
+
if len(ret_s["frame_crop_lst"]) != n_frames:
|
560 |
+
n_frames = min(len(source_rgb_lst), len(ret_s["frame_crop_lst"]))
|
561 |
+
img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
|
562 |
+
mask_ori_lst = [prepare_paste_back(inference_cfg.mask_crop, source_M_c2o, dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0])) for source_M_c2o in source_M_c2o_lst]
|
563 |
+
else:
|
564 |
+
source_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_rgb_lst)
|
565 |
+
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_rgb_lst] # force to resize to 256x256
|
566 |
+
source_M_c2o_lst, mask_ori_lst = None, None
|
567 |
+
|
568 |
+
c_s_eyes_lst, c_s_lip_lst = self.live_portrait_wrapper.calc_ratio(source_lmk_crop_lst)
|
569 |
+
# save the motion template
|
570 |
+
I_s_lst = self.live_portrait_wrapper.prepare_videos(img_crop_256x256_lst)
|
571 |
+
source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=source_fps)
|
572 |
+
|
573 |
+
f_s_user_lst, x_s_user_lst, x_d_i_new_lst = [], [], []
|
574 |
+
for i in track(range(n_frames), description='Preparing silencing lip...', total=n_frames):
|
575 |
+
x_s_info = source_template_dct['motion'][i]
|
576 |
+
x_s_info = dct2device(x_s_info, device)
|
577 |
+
scale_s = x_s_info['scale']
|
578 |
+
x_s_user = x_s_info['x_s']
|
579 |
+
x_c_s = x_s_info['kp']
|
580 |
+
R_s = x_s_info['R']
|
581 |
+
t_s = x_s_info['t']
|
582 |
+
delta_new = torch.zeros_like(x_s_info['exp']) + torch.from_numpy(inference_cfg.lip_array).to(dtype=torch.float32, device=device)
|
583 |
+
for eyes_idx in [11, 13, 15, 16, 18]:
|
584 |
+
delta_new[:, eyes_idx, :] = x_s_info['exp'][:, eyes_idx, :]
|
585 |
+
source_lmk = source_lmk_crop_lst[i]
|
586 |
+
img_crop_256x256 = img_crop_256x256_lst[i]
|
587 |
+
I_s = I_s_lst[i]
|
588 |
+
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
|
589 |
+
x_d_i_new = scale_s * (x_c_s @ R_s + delta_new) + t_s
|
590 |
+
f_s_user_lst.append(f_s_user); x_s_user_lst.append(x_s_user); x_d_i_new_lst.append(x_d_i_new)
|
591 |
+
return f_s_user_lst, x_s_user_lst, x_d_i_new_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, source_fps, n_frames
|
592 |
+
else:
|
593 |
+
# when press the clear button, go here
|
594 |
+
raise gr.Error("Please upload a source video as the input 🤗🤗🤗", duration=5)
|
595 |
+
|
596 |
+
class GradioPipelineAnimal(LivePortraitPipelineAnimal):
|
597 |
+
"""gradio for animal
|
598 |
+
"""
|
599 |
+
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
|
600 |
+
inference_cfg.flag_crop_driving_video = True # ensure the face_analysis_wrapper is enabled
|
601 |
+
super().__init__(inference_cfg, crop_cfg)
|
602 |
+
# self.live_portrait_wrapper_animal = self.live_portrait_wrapper_animal
|
603 |
+
self.args = args
|
604 |
+
|
605 |
+
|
606 |
+
@torch.no_grad()
|
607 |
+
def execute_video(
|
608 |
+
self,
|
609 |
+
input_source_image_path=None,
|
610 |
+
input_driving_video_path=None,
|
611 |
+
input_driving_video_pickle_path=None,
|
612 |
+
flag_do_crop_input=False,
|
613 |
+
flag_remap_input=False,
|
614 |
+
driving_multiplier=1.0,
|
615 |
+
flag_stitching=False,
|
616 |
+
flag_crop_driving_video_input=False,
|
617 |
+
scale=2.3,
|
618 |
+
vx_ratio=0.0,
|
619 |
+
vy_ratio=-0.125,
|
620 |
+
scale_crop_driving_video=2.2,
|
621 |
+
vx_ratio_crop_driving_video=0.0,
|
622 |
+
vy_ratio_crop_driving_video=-0.1,
|
623 |
+
tab_selection=None,
|
624 |
+
):
|
625 |
+
""" for video-driven potrait animation
|
626 |
+
"""
|
627 |
+
input_source_path = input_source_image_path
|
628 |
+
|
629 |
+
if tab_selection == 'Video':
|
630 |
+
input_driving_path = input_driving_video_path
|
631 |
+
elif tab_selection == 'Pickle':
|
632 |
+
input_driving_path = input_driving_video_pickle_path
|
633 |
+
else:
|
634 |
+
input_driving_path = input_driving_video_pickle_path
|
635 |
+
|
636 |
+
if input_source_path is not None and input_driving_path is not None:
|
637 |
+
if osp.exists(input_driving_path) and tab_selection == 'Video' and is_square_video(input_driving_path) is False:
|
638 |
+
flag_crop_driving_video_input = True
|
639 |
+
log("The driving video is not square, it will be cropped to square automatically.")
|
640 |
+
gr.Info("The driving video is not square, it will be cropped to square automatically.", duration=2)
|
641 |
+
|
642 |
+
args_user = {
|
643 |
+
'source': input_source_path,
|
644 |
+
'driving': input_driving_path,
|
645 |
+
'flag_do_crop': flag_do_crop_input,
|
646 |
+
'flag_pasteback': flag_remap_input,
|
647 |
+
'driving_multiplier': driving_multiplier,
|
648 |
+
'flag_stitching': flag_stitching,
|
649 |
+
'flag_crop_driving_video': flag_crop_driving_video_input,
|
650 |
+
'scale': scale,
|
651 |
+
'vx_ratio': vx_ratio,
|
652 |
+
'vy_ratio': vy_ratio,
|
653 |
+
'scale_crop_driving_video': scale_crop_driving_video,
|
654 |
+
'vx_ratio_crop_driving_video': vx_ratio_crop_driving_video,
|
655 |
+
'vy_ratio_crop_driving_video': vy_ratio_crop_driving_video,
|
656 |
+
}
|
657 |
+
# update config from user input
|
658 |
+
self.args = update_args(self.args, args_user)
|
659 |
+
self.live_portrait_wrapper_animal.update_config(self.args.__dict__)
|
660 |
+
self.cropper.update_config(self.args.__dict__)
|
661 |
+
# video driven animation
|
662 |
+
video_path, video_path_concat, video_gif_path = self.execute(self.args)
|
663 |
+
gr.Info("Run successfully!", duration=2)
|
664 |
+
return video_path, video_path_concat, video_gif_path
|
665 |
+
else:
|
666 |
+
raise gr.Error("Please upload the source animal image, and driving video 🤗🤗🤗", duration=5)
|