File size: 8,448 Bytes
6d6d07b cbe1925 6d6d07b cbe1925 6d6d07b b11a4e4 cbe1925 b11a4e4 cbe1925 b11a4e4 6d6d07b cbe1925 b11a4e4 6d6d07b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
import json
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os
from huggingface_hub import upload_file, hf_hub_download
# === Custom PUP-themed CSS ===
PUP_Themed_css = """
html, body, .gradio-container, .gr-app {
height: 100% !important;
margin: 0 !important;
padding: 0 !important;
background: linear-gradient(to bottom right, #800000, #ff0000, #ffeb3b, #ffa500) !important;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
color: #1b4332 !important;
}
"""
# === Load Models and Data ===
embedding_model = SentenceTransformer('paraphrase-mpnet-base-v2')
llm = pipeline("text2text-generation", model="google/flan-t5-small")
with open("dataset.json", "r") as f:
dataset = json.load(f)
questions = [item["question"] for item in dataset]
answers = [item["answer"] for item in dataset]
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)
chat_history = []
feedback_data = []
feedback_questions = []
feedback_answers = []
feedback_embeddings = None
feedback_path = "outputs/feedback.json"
os.makedirs("outputs", exist_ok=True)
# === Load feedback from Hugging Face if available ===
try:
hf_token = os.getenv("PUP_AI_Chatbot_Token")
downloaded_path = hf_hub_download(
repo_id="oceddyyy/University_Inquiries_Feedback",
filename="feedback.json",
repo_type="dataset",
token=hf_token
)
with open(downloaded_path, "r") as f:
feedback_data = json.load(f)
feedback_questions = [item["question"] for item in feedback_data]
feedback_answers = [item["response"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
# Save to local copy for later editing during runtime
with open(feedback_path, "w") as f_local:
json.dump(feedback_data, f_local, indent=4)
except Exception as e:
print(f"[Startup] No feedback loaded from HF: {e}")
feedback_data = []
# === Hugging Face Upload ===
def upload_feedback_to_hf():
hf_token = os.getenv("PUP_AI_Chatbot_Token")
if not hf_token:
raise ValueError("Hugging Face token not found in environment variables!")
try:
upload_file(
path_or_fileobj=feedback_path,
path_in_repo="feedback.json",
repo_id="oceddyyy/University_Inquiries_Feedback",
repo_type="dataset",
token=hf_token
)
print("Feedback uploaded to Hugging Face successfully.")
except Exception as e:
print(f"Error uploading feedback to HF: {e}")
# === Chatbot Response Function ===
def chatbot_response(query, chat_history):
query_embedding = embedding_model.encode([query], convert_to_tensor=True)
# === Feedback Matching ===
if feedback_embeddings is not None:
feedback_scores = cosine_similarity(query_embedding.cpu().numpy(), feedback_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(feedback_scores))
best_score = feedback_scores[best_idx]
matched_feedback = feedback_data[best_idx]
base_threshold = 0.8
upvotes = matched_feedback.get("upvotes", 0)
downvotes = matched_feedback.get("downvotes", 0)
adjusted_threshold = base_threshold - (0.01 * upvotes) + (0.01 * downvotes)
dynamic_threshold = min(max(adjusted_threshold, 0.4), 1.0)
if best_score >= dynamic_threshold:
response = matched_feedback["response"]
chat_history.append((query, response))
return "", chat_history, gr.update(visible=True)
# === Main Handbook Matching ===
similarity_scores = cosine_similarity(query_embedding.cpu().numpy(), question_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(similarity_scores))
best_score = similarity_scores[best_idx]
matched_q = questions[best_idx]
matched_a = answers[best_idx]
if best_score < 0.4:
response = "Sorry, I couldn't find a relevant answer."
chat_history.append((query, response))
return "", chat_history, gr.update(visible=True)
prompt = (
f"\"{matched_a}\"\n\n"
f"Please explain this to a student in a short, natural, and easy-to-understand way. "
f"Use simple words, and do not add new information."
)
llm_response = llm(prompt, max_length=200, do_sample=True, temperature=0.7, top_p=0.9)[0]["generated_text"].strip()
if not llm_response:
llm_response = "I'm sorry, I couldn't simplify that at the moment."
a_embedding = embedding_model.encode([matched_a], convert_to_tensor=True)
llm_embedding = embedding_model.encode([llm_response], convert_to_tensor=True)
explanation_similarity = cosine_similarity(a_embedding.cpu().numpy(), llm_embedding.cpu().numpy())[0][0]
if explanation_similarity >= 0.95:
final_response = f"According to the university handbook, {matched_a}"
else:
final_response = f"According to the university handbook, {matched_a} In simpler terms, {llm_response}"
chat_history.append((query, final_response))
return "", chat_history, gr.update(visible=True)
# === Feedback Save & Upvote/Downvote Tracking ===
def record_feedback(feedback, chat_history):
global feedback_embeddings
if chat_history:
last_query, last_response = chat_history[-1]
matched = False
for item in feedback_data:
existing_embedding = embedding_model.encode([item["question"]], convert_to_tensor=True)
new_embedding = embedding_model.encode([last_query], convert_to_tensor=True)
similarity = cosine_similarity(existing_embedding.cpu().numpy(), new_embedding.cpu().numpy())[0][0]
if similarity >= 0.8 and item["response"] == last_response:
matched = True
votes = {"positive": "upvotes", "negative": "downvotes"}
item[votes[feedback]] = item.get(votes[feedback], 0) + 1
break
if not matched:
entry = {
"question": last_query,
"response": last_response,
"feedback": feedback,
"upvotes": 1 if feedback == "positive" else 0,
"downvotes": 1 if feedback == "negative" else 0
}
feedback_data.append(entry)
with open(feedback_path, "w") as f:
json.dump(feedback_data, f, indent=4)
feedback_questions = [item["question"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
upload_feedback_to_hf()
return gr.update(visible=False)
# === Gradio UI ===
with gr.Blocks(css=PUP_Themed_css, title="University Handbook AI Chatbot") as demo:
gr.Markdown(
"<div style='"
"background-color: #ffffff; "
"border-radius: 16px; "
"padding: 24px 16px; "
"margin-bottom: 24px; "
"box-shadow: 0 6px 16px rgba(0, 0, 0, 0.15); "
"max-width: 700px; "
"margin-left: auto; "
"margin-right: auto; "
"text-align: center;'>"
"<h1 style='font-size: 2.2rem; margin: 0;'>University Inquiries AI Chatbot</h1>"
"</div>"
)
state = gr.State(chat_history)
chatbot_ui = gr.Chatbot(label="Chat", show_label=False)
with gr.Row():
query_input = gr.Textbox(placeholder="Type your question here...", show_label=False)
submit_btn = gr.Button("Submit")
with gr.Row(visible=False) as feedback_row:
gr.Markdown("Was this helpful?")
thumbs_up = gr.Button("👍")
thumbs_down = gr.Button("👎")
def handle_submit(message, chat_state):
return chatbot_response(message, chat_state)
submit_btn.click(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])
query_input.submit(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])
thumbs_up.click(lambda state: record_feedback("positive", state), inputs=[state], outputs=[feedback_row])
thumbs_down.click(lambda state: record_feedback("negative", state), inputs=[state], outputs=[feedback_row])
# === Launch App ===
if __name__ == "__main__":
demo.launch()
|