File size: 8,448 Bytes
6d6d07b
 
 
 
 
 
 
cbe1925
6d6d07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6d07b
b11a4e4
 
cbe1925
b11a4e4
 
 
 
 
 
 
cbe1925
b11a4e4
 
 
 
 
 
 
6d6d07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe1925
b11a4e4
6d6d07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import json
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os
from huggingface_hub import upload_file, hf_hub_download

# === Custom PUP-themed CSS ===
PUP_Themed_css = """
html, body, .gradio-container, .gr-app {
    height: 100% !important;
    margin: 0 !important;
    padding: 0 !important;
    background: linear-gradient(to bottom right, #800000, #ff0000, #ffeb3b, #ffa500) !important;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
    color: #1b4332 !important;
}
"""

# === Load Models and Data ===
embedding_model = SentenceTransformer('paraphrase-mpnet-base-v2')
llm = pipeline("text2text-generation", model="google/flan-t5-small")

with open("dataset.json", "r") as f:
    dataset = json.load(f)

questions = [item["question"] for item in dataset]
answers = [item["answer"] for item in dataset]
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)

chat_history = []
feedback_data = []
feedback_questions = []
feedback_answers = []
feedback_embeddings = None

feedback_path = "outputs/feedback.json"
os.makedirs("outputs", exist_ok=True)

# === Load feedback from Hugging Face if available ===
try:
    hf_token = os.getenv("PUP_AI_Chatbot_Token")
    downloaded_path = hf_hub_download(
        repo_id="oceddyyy/University_Inquiries_Feedback",
        filename="feedback.json",
        repo_type="dataset",
        token=hf_token
    )
    with open(downloaded_path, "r") as f:
        feedback_data = json.load(f)
        feedback_questions = [item["question"] for item in feedback_data]
        feedback_answers = [item["response"] for item in feedback_data]
        if feedback_questions:
            feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)

    # Save to local copy for later editing during runtime
    with open(feedback_path, "w") as f_local:
        json.dump(feedback_data, f_local, indent=4)

except Exception as e:
    print(f"[Startup] No feedback loaded from HF: {e}")
    feedback_data = []

# === Hugging Face Upload ===
def upload_feedback_to_hf():
    hf_token = os.getenv("PUP_AI_Chatbot_Token")
    if not hf_token:
        raise ValueError("Hugging Face token not found in environment variables!")
    
    try:
        upload_file(
            path_or_fileobj=feedback_path,
            path_in_repo="feedback.json",
            repo_id="oceddyyy/University_Inquiries_Feedback",
            repo_type="dataset",
            token=hf_token
        )
        print("Feedback uploaded to Hugging Face successfully.")
    except Exception as e:
        print(f"Error uploading feedback to HF: {e}")

# === Chatbot Response Function ===
def chatbot_response(query, chat_history):
    query_embedding = embedding_model.encode([query], convert_to_tensor=True)

    # === Feedback Matching ===
    if feedback_embeddings is not None:
        feedback_scores = cosine_similarity(query_embedding.cpu().numpy(), feedback_embeddings.cpu().numpy())[0]
        best_idx = int(np.argmax(feedback_scores))
        best_score = feedback_scores[best_idx]
        matched_feedback = feedback_data[best_idx]

        base_threshold = 0.8
        upvotes = matched_feedback.get("upvotes", 0)
        downvotes = matched_feedback.get("downvotes", 0)
        adjusted_threshold = base_threshold - (0.01 * upvotes) + (0.01 * downvotes)
        dynamic_threshold = min(max(adjusted_threshold, 0.4), 1.0)

        if best_score >= dynamic_threshold:
            response = matched_feedback["response"]
            chat_history.append((query, response))
            return "", chat_history, gr.update(visible=True)

    # === Main Handbook Matching ===
    similarity_scores = cosine_similarity(query_embedding.cpu().numpy(), question_embeddings.cpu().numpy())[0]
    best_idx = int(np.argmax(similarity_scores))
    best_score = similarity_scores[best_idx]
    matched_q = questions[best_idx]
    matched_a = answers[best_idx]

    if best_score < 0.4:
        response = "Sorry, I couldn't find a relevant answer."
        chat_history.append((query, response))
        return "", chat_history, gr.update(visible=True)

    prompt = (
        f"\"{matched_a}\"\n\n"
        f"Please explain this to a student in a short, natural, and easy-to-understand way. "
        f"Use simple words, and do not add new information."
    )

    llm_response = llm(prompt, max_length=200, do_sample=True, temperature=0.7, top_p=0.9)[0]["generated_text"].strip()
    if not llm_response:
        llm_response = "I'm sorry, I couldn't simplify that at the moment."

    a_embedding = embedding_model.encode([matched_a], convert_to_tensor=True)
    llm_embedding = embedding_model.encode([llm_response], convert_to_tensor=True)
    explanation_similarity = cosine_similarity(a_embedding.cpu().numpy(), llm_embedding.cpu().numpy())[0][0]

    if explanation_similarity >= 0.95:
        final_response = f"According to the university handbook, {matched_a}"
    else:
        final_response = f"According to the university handbook, {matched_a} In simpler terms, {llm_response}"

    chat_history.append((query, final_response))
    return "", chat_history, gr.update(visible=True)

# === Feedback Save & Upvote/Downvote Tracking ===
def record_feedback(feedback, chat_history):
    global feedback_embeddings
    if chat_history:
        last_query, last_response = chat_history[-1]
        matched = False

        for item in feedback_data:
            existing_embedding = embedding_model.encode([item["question"]], convert_to_tensor=True)
            new_embedding = embedding_model.encode([last_query], convert_to_tensor=True)
            similarity = cosine_similarity(existing_embedding.cpu().numpy(), new_embedding.cpu().numpy())[0][0]
            if similarity >= 0.8 and item["response"] == last_response:
                matched = True
                votes = {"positive": "upvotes", "negative": "downvotes"}
                item[votes[feedback]] = item.get(votes[feedback], 0) + 1
                break

        if not matched:
            entry = {
                "question": last_query,
                "response": last_response,
                "feedback": feedback,
                "upvotes": 1 if feedback == "positive" else 0,
                "downvotes": 1 if feedback == "negative" else 0
            }
            feedback_data.append(entry)

        with open(feedback_path, "w") as f:
            json.dump(feedback_data, f, indent=4)

        feedback_questions = [item["question"] for item in feedback_data]
        if feedback_questions:
            feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)

        upload_feedback_to_hf()

    return gr.update(visible=False)

# === Gradio UI ===
with gr.Blocks(css=PUP_Themed_css, title="University Handbook AI Chatbot") as demo:
    gr.Markdown(
        "<div style='"
        "background-color: #ffffff; "
        "border-radius: 16px; "
        "padding: 24px 16px; "
        "margin-bottom: 24px; "
        "box-shadow: 0 6px 16px rgba(0, 0, 0, 0.15); "
        "max-width: 700px; "
        "margin-left: auto; "
        "margin-right: auto; "
        "text-align: center;'>"
        "<h1 style='font-size: 2.2rem; margin: 0;'>University Inquiries AI Chatbot</h1>"
        "</div>"
    )

    state = gr.State(chat_history)
    chatbot_ui = gr.Chatbot(label="Chat", show_label=False)

    with gr.Row():
        query_input = gr.Textbox(placeholder="Type your question here...", show_label=False)
        submit_btn = gr.Button("Submit")

    with gr.Row(visible=False) as feedback_row:
        gr.Markdown("Was this helpful?")
        thumbs_up = gr.Button("👍")
        thumbs_down = gr.Button("👎")

    def handle_submit(message, chat_state):
        return chatbot_response(message, chat_state)

    submit_btn.click(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])
    query_input.submit(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])

    thumbs_up.click(lambda state: record_feedback("positive", state), inputs=[state], outputs=[feedback_row])
    thumbs_down.click(lambda state: record_feedback("negative", state), inputs=[state], outputs=[feedback_row])

# === Launch App ===
if __name__ == "__main__":
    demo.launch()