File size: 8,926 Bytes
6d6d07b a0a5375 6d6d07b a0a5375 6d6d07b c154e3d 6d6d07b cbe1925 6d6d07b b11a4e4 cbe1925 b11a4e4 a0a5375 b11a4e4 cbe1925 b11a4e4 6d6d07b 9a20546 6d6d07b 34326bd 6d6d07b a0a5375 9a20546 a0a5375 6d6d07b 9a20546 6d6d07b a0a5375 6d6d07b a0a5375 6d6d07b cbe1925 b11a4e4 6d6d07b a0a5375 6d6d07b a0a5375 6d6d07b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import json
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os
from huggingface_hub import upload_file, hf_hub_download, InferenceClient
PUP_Themed_css = """
html, body, .gradio-container, .gr-app {
height: 100% !important;
margin: 0 !important;
padding: 0 !important;
background: linear-gradient(to bottom right, #800000, #ff0000, #ffeb3b, #ffa500) !important;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
color: #1b4332 !important;
}
"""
embedding_model = SentenceTransformer('paraphrase-mpnet-base-v2')
inference_token = os.getenv("HF_TOKEN") or os.getenv("PUP_AI_Chatbot_Token")
inference_client = InferenceClient(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
token=inference_token
)
with open("dataset.json", "r") as f:
dataset = json.load(f)
questions = [item["question"] for item in dataset]
answers = [item["answer"] for item in dataset]
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)
chat_history = []
feedback_data = []
feedback_questions = []
feedback_embeddings = None
dev_mode = {"enabled": False}
feedback_path = "outputs/feedback.json"
os.makedirs("outputs", exist_ok=True)
try:
hf_token = os.getenv("PUP_AI_Chatbot_Token")
downloaded_path = hf_hub_download(
repo_id="oceddyyy/University_Inquiries_Feedback",
filename="feedback.json",
repo_type="dataset",
token=hf_token
)
with open(downloaded_path, "r") as f:
feedback_data = json.load(f)
feedback_questions = [item["question"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
with open(feedback_path, "w") as f_local:
json.dump(feedback_data, f_local, indent=4)
except Exception as e:
print(f"[Startup] No feedback loaded from HF: {e}")
feedback_data = []
def upload_feedback_to_hf():
hf_token = os.getenv("PUP_AI_Chatbot_Token")
if not hf_token:
raise ValueError("Hugging Face token not found in environment variables!")
try:
upload_file(
path_or_fileobj=feedback_path,
path_in_repo="feedback.json",
repo_id="oceddyyy/University_Inquiries_Feedback",
repo_type="dataset",
token=hf_token
)
print("Feedback uploaded to Hugging Face successfully.")
except Exception as e:
print(f"Error uploading feedback to HF: {e}")
def chatbot_response(query, chat_history):
query_embedding = embedding_model.encode([query], convert_to_tensor=True)
if feedback_embeddings is not None:
feedback_scores = cosine_similarity(query_embedding.cpu().numpy(), feedback_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(feedback_scores))
best_score = feedback_scores[best_idx]
matched_feedback = feedback_data[best_idx]
base_threshold = 0.8
upvotes = matched_feedback.get("upvotes", 0)
downvotes = matched_feedback.get("downvotes", 0)
adjusted_threshold = base_threshold - (0.01 * upvotes) + (0.01 * downvotes)
dynamic_threshold = min(max(adjusted_threshold, 0.4), 1.0)
if best_score >= dynamic_threshold:
response = matched_feedback["response"]
chat_history.append((query, response))
return "", chat_history, gr.update(visible=True)
similarity_scores = cosine_similarity(query_embedding.cpu().numpy(), question_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(similarity_scores))
best_score = similarity_scores[best_idx]
matched_item = dataset[best_idx] # Changed this to get full entry including month/year
matched_a = matched_item.get("answer", "")
if best_score < 0.4:
response = "Sorry, but the PUP handbook does not contain such information."
else:
if dev_mode["enabled"]:
prompt = (
f"A student asked:\n\"{query}\"\n\n"
f"Relevant handbook info:\n\"{matched_a}\"\n\n"
f"Please answer based only on this handbook content."
)
try:
response = inference_client.text_generation(prompt, max_new_tokens=200, temperature=0.7)
except Exception as e:
print(f"[ERROR] HF inference failed: {e}")
response = f"(Fallback) {matched_a}"
else:
if "month" in matched_item and "year" in matched_item:
response = f"As of {matched_item['month']}, {matched_item['year']}, {matched_a}"
else:
response = f"According to 2019 Proposed PUP Handbook, {matched_a}"
chat_history.append((query, response.strip()))
return "", chat_history, gr.update(visible=True)
def record_feedback(feedback, chat_history):
global feedback_embeddings, feedback_questions
if chat_history:
last_query, last_response = chat_history[-1]
matched = False
new_embedding = embedding_model.encode([last_query], convert_to_tensor=True)
for item in feedback_data:
existing_embedding = embedding_model.encode([item["question"]], convert_to_tensor=True)
similarity = cosine_similarity(existing_embedding.cpu().numpy(), new_embedding.cpu().numpy())[0][0]
if similarity >= 0.8 and item["response"] == last_response:
matched = True
votes = {"positive": "upvotes", "negative": "downvotes"}
item[votes[feedback]] = item.get(votes[feedback], 0) + 1
break
if not matched:
entry = {
"question": last_query,
"response": last_response,
"feedback": feedback,
"upvotes": 1 if feedback == "positive" else 0,
"downvotes": 1 if feedback == "negative" else 0
}
feedback_data.append(entry)
with open(feedback_path, "w") as f:
json.dump(feedback_data, f, indent=4)
feedback_questions = [item["question"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
upload_feedback_to_hf()
return gr.update(visible=False)
with gr.Blocks(css=PUP_Themed_css, title="University Handbook AI Chatbot") as demo:
gr.Markdown(
"""
<div style='
background-color: var(--block-background-fill);
border-radius: 16px;
padding: 24px 16px;
margin-bottom: 24px;
box-shadow: 0 6px 16px rgba(0, 0, 0, 0.15);
max-width: 700px;
margin-left: auto;
margin-right: auto;
text-align: center;
color: var(--text-color);'>
<h1 style='font-size: 2.2rem; margin: 0;'>University Inquiries AI Chatbot</h1>
</div>
"""
)
state = gr.State(chat_history)
chatbot_ui = gr.Chatbot(label="Chat", show_label=False)
with gr.Row():
dev_btn = gr.Button("DevMode π")
password_box = gr.Textbox(placeholder="Enter Dev password", type="password", visible=False, show_label=False)
confirm_btn = gr.Button("Confirm", visible=False)
dev_pass = os.getenv("DEV_MODE_PASSWORD", "letmein")
def show_password_input():
return gr.update(visible=True), gr.update(visible=True)
def enable_devmode(password_input):
if password_input == dev_pass:
dev_mode["enabled"] = True
return gr.update(visible=False), gr.update(visible=False), gr.update(value="DevMode β
", interactive=False)
return gr.update(visible=True), gr.update(visible=True), gr.update(value="Wrong password. Try again.")
dev_btn.click(show_password_input, outputs=[password_box, confirm_btn])
confirm_btn.click(enable_devmode, inputs=[password_box], outputs=[password_box, confirm_btn, dev_btn])
with gr.Row():
query_input = gr.Textbox(placeholder="Type your question here...", show_label=False)
submit_btn = gr.Button("Submit")
with gr.Row(visible=False) as feedback_row:
gr.Markdown("Was this helpful?")
thumbs_up = gr.Button("π")
thumbs_down = gr.Button("π")
def handle_submit(message, chat_state):
return chatbot_response(message, chat_state)
submit_btn.click(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])
query_input.submit(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])
thumbs_up.click(lambda state: record_feedback("positive", state), inputs=[state], outputs=[feedback_row])
thumbs_down.click(lambda state: record_feedback("negative", state), inputs=[state], outputs=[feedback_row])
if __name__ == "__main__":
demo.launch()
|