oceddyyy's picture
Update app.py
d7940ce verified
raw
history blame
8.07 kB
import gradio as gr
import json
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os
from huggingface_hub import upload_file, hf_hub_download
PUP_Themed_css = """
html, body, .gradio-container, .gr-app {
height: 100% !important;
margin: 0 !important;
padding: 0 !important;
background: linear-gradient(to bottom right, #800000, #ff0000, #ffeb3b, #ffa500) !important;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
color: #1b4332 !important;
}
"""
embedding_model = SentenceTransformer('paraphrase-mpnet-base-v2')
llm = pipeline("text2text-generation", model="google/flan-t5-small")
with open("dataset.json", "r") as f:
dataset = json.load(f)
questions = [item["question"] for item in dataset]
answers = [item["answer"] for item in dataset]
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)
chat_history = []
feedback_data = []
feedback_questions = []
feedback_answers = []
feedback_embeddings = None
feedback_path = "outputs/feedback.json"
os.makedirs("outputs", exist_ok=True)
try:
hf_token = os.getenv("PUP_AI_Chatbot_Token")
downloaded_path = hf_hub_download(
repo_id="oceddyyy/University_Inquiries_Feedback",
filename="feedback.json",
repo_type="dataset",
token=hf_token
)
with open(downloaded_path, "r") as f:
feedback_data = json.load(f)
feedback_questions = [item["question"] for item in feedback_data]
feedback_answers = [item["response"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
with open(feedback_path, "w") as f_local:
json.dump(feedback_data, f_local, indent=4)
except Exception as e:
print(f"[Startup] No feedback loaded from HF: {e}")
feedback_data = []
def upload_feedback_to_hf():
hf_token = os.getenv("PUP_AI_Chatbot_Token")
if not hf_token:
raise ValueError("Hugging Face token not found in environment variables!")
try:
upload_file(
path_or_fileobj=feedback_path,
path_in_repo="feedback.json",
repo_id="oceddyyy/University_Inquiries_Feedback",
repo_type="dataset",
token=hf_token
)
print("Feedback uploaded to Hugging Face successfully.")
except Exception as e:
print(f"Error uploading feedback to HF: {e}")
def chatbot_response(query, chat_history):
query_embedding = embedding_model.encode([query], convert_to_tensor=True)
if feedback_embeddings is not None:
feedback_scores = cosine_similarity(query_embedding.cpu().numpy(), feedback_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(feedback_scores))
best_score = feedback_scores[best_idx]
matched_feedback = feedback_data[best_idx]
base_threshold = 0.8
upvotes = matched_feedback.get("upvotes", 0)
downvotes = matched_feedback.get("downvotes", 0)
adjusted_threshold = base_threshold - (0.01 * upvotes) + (0.01 * downvotes)
dynamic_threshold = min(max(adjusted_threshold, 0.4), 1.0)
if best_score >= dynamic_threshold:
response = matched_feedback["response"]
chat_history.append((query, response))
return "", chat_history, gr.update(visible=True)
similarity_scores = cosine_similarity(query_embedding.cpu().numpy(), question_embeddings.cpu().numpy())[0]
best_idx = int(np.argmax(similarity_scores))
best_score = similarity_scores[best_idx]
matched_q = questions[best_idx]
matched_a = answers[best_idx]
if best_score < 0.4:
response = "Sorry, but the PUP handbook does not contain such information."
chat_history.append((query, response))
return "", chat_history, gr.update(visible=True)
prompt = (
f"\"{matched_a}\"\n\n"
f"Please explain this to a student in a short, natural, and easy-to-understand way. "
f"Use simple words, and do not add new information."
)
llm_response = llm(prompt, max_length=200, do_sample=True, temperature=0.7, top_p=0.9)[0]["generated_text"].strip()
if not llm_response:
llm_response = "I'm sorry, I couldn't simplify that at the moment."
a_embedding = embedding_model.encode([matched_a], convert_to_tensor=True)
llm_embedding = embedding_model.encode([llm_response], convert_to_tensor=True)
explanation_similarity = cosine_similarity(a_embedding.cpu().numpy(), llm_embedding.cpu().numpy())[0][0]
if explanation_similarity >= 0.95:
final_response = f"According to the university handbook, {matched_a}"
else:
final_response = f"According to the university handbook, {matched_a} In simpler terms, {llm_response}"
chat_history.append((query, final_response))
return "", chat_history, gr.update(visible=True)
def record_feedback(feedback, chat_history):
global feedback_embeddings
if chat_history:
last_query, last_response = chat_history[-1]
matched = False
for item in feedback_data:
existing_embedding = embedding_model.encode([item["question"]], convert_to_tensor=True)
new_embedding = embedding_model.encode([last_query], convert_to_tensor=True)
similarity = cosine_similarity(existing_embedding.cpu().numpy(), new_embedding.cpu().numpy())[0][0]
if similarity >= 0.8 and item["response"] == last_response:
matched = True
votes = {"positive": "upvotes", "negative": "downvotes"}
item[votes[feedback]] = item.get(votes[feedback], 0) + 1
break
if not matched:
entry = {
"question": last_query,
"response": last_response,
"feedback": feedback,
"upvotes": 1 if feedback == "positive" else 0,
"downvotes": 1 if feedback == "negative" else 0
}
feedback_data.append(entry)
with open(feedback_path, "w") as f:
json.dump(feedback_data, f, indent=4)
feedback_questions = [item["question"] for item in feedback_data]
if feedback_questions:
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
upload_feedback_to_hf()
return gr.update(visible=False)
with gr.Blocks(css=PUP_Themed_css, title="University Handbook AI Chatbot") as demo:
gr.Markdown(
"<div style='"
"background-color: #ffffff; "
"border-radius: 16px; "
"padding: 24px 16px; "
"margin-bottom: 24px; "
"box-shadow: 0 6px 16px rgba(0, 0, 0, 0.15); "
"max-width: 700px; "
"margin-left: auto; "
"margin-right: auto; "
"text-align: center;'>"
"<h1 style='font-size: 2.2rem; margin: 0;'>University Inquiries AI Chatbot</h1>"
"</div>"
)
state = gr.State(chat_history)
chatbot_ui = gr.Chatbot(label="Chat", show_label=False)
with gr.Row():
query_input = gr.Textbox(placeholder="Type your question here...", show_label=False)
submit_btn = gr.Button("Submit")
with gr.Row(visible=False) as feedback_row:
gr.Markdown("Was this helpful?")
thumbs_up = gr.Button("👍")
thumbs_down = gr.Button("👎")
def handle_submit(message, chat_state):
return chatbot_response(message, chat_state)
submit_btn.click(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])
query_input.submit(handle_submit, [query_input, state], [query_input, chatbot_ui, feedback_row])
thumbs_up.click(lambda state: record_feedback("positive", state), inputs=[state], outputs=[feedback_row])
thumbs_down.click(lambda state: record_feedback("negative", state), inputs=[state], outputs=[feedback_row])
if __name__ == "__main__":
demo.launch()