Spaces:
Running
Running
from openai import OpenAI | |
import pdb | |
from langchain_openai import ChatOpenAI | |
from langchain_core.globals import get_llm_cache | |
from langchain_core.language_models.base import ( | |
BaseLanguageModel, | |
LangSmithParams, | |
LanguageModelInput, | |
) | |
import os | |
from langchain_core.load import dumpd, dumps | |
from langchain_core.messages import ( | |
AIMessage, | |
SystemMessage, | |
AnyMessage, | |
BaseMessage, | |
BaseMessageChunk, | |
HumanMessage, | |
convert_to_messages, | |
message_chunk_to_message, | |
) | |
from langchain_core.outputs import ( | |
ChatGeneration, | |
ChatGenerationChunk, | |
ChatResult, | |
LLMResult, | |
RunInfo, | |
) | |
from langchain_ollama import ChatOllama | |
from langchain_core.output_parsers.base import OutputParserLike | |
from langchain_core.runnables import Runnable, RunnableConfig | |
from langchain_core.tools import BaseTool | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
Callable, | |
Literal, | |
Optional, | |
Union, | |
cast, List, | |
) | |
from langchain_anthropic import ChatAnthropic | |
from langchain_mistralai import ChatMistralAI | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_ollama import ChatOllama | |
from langchain_openai import AzureChatOpenAI, ChatOpenAI | |
from langchain_ibm import ChatWatsonx | |
from langchain_aws import ChatBedrock | |
from pydantic import SecretStr | |
from src.utils import config | |
class DeepSeekR1ChatOpenAI(ChatOpenAI): | |
def __init__(self, *args: Any, **kwargs: Any) -> None: | |
super().__init__(*args, **kwargs) | |
self.client = OpenAI( | |
base_url=kwargs.get("base_url"), | |
api_key=kwargs.get("api_key") | |
) | |
async def ainvoke( | |
self, | |
input: LanguageModelInput, | |
config: Optional[RunnableConfig] = None, | |
*, | |
stop: Optional[list[str]] = None, | |
**kwargs: Any, | |
) -> AIMessage: | |
message_history = [] | |
for input_ in input: | |
if isinstance(input_, SystemMessage): | |
message_history.append({"role": "system", "content": input_.content}) | |
elif isinstance(input_, AIMessage): | |
message_history.append({"role": "assistant", "content": input_.content}) | |
else: | |
message_history.append({"role": "user", "content": input_.content}) | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=message_history | |
) | |
reasoning_content = response.choices[0].message.reasoning_content | |
content = response.choices[0].message.content | |
return AIMessage(content=content, reasoning_content=reasoning_content) | |
def invoke( | |
self, | |
input: LanguageModelInput, | |
config: Optional[RunnableConfig] = None, | |
*, | |
stop: Optional[list[str]] = None, | |
**kwargs: Any, | |
) -> AIMessage: | |
message_history = [] | |
for input_ in input: | |
if isinstance(input_, SystemMessage): | |
message_history.append({"role": "system", "content": input_.content}) | |
elif isinstance(input_, AIMessage): | |
message_history.append({"role": "assistant", "content": input_.content}) | |
else: | |
message_history.append({"role": "user", "content": input_.content}) | |
response = self.client.chat.completions.create( | |
model=self.model_name, | |
messages=message_history | |
) | |
reasoning_content = response.choices[0].message.reasoning_content | |
content = response.choices[0].message.content | |
return AIMessage(content=content, reasoning_content=reasoning_content) | |
class DeepSeekR1ChatOllama(ChatOllama): | |
async def ainvoke( | |
self, | |
input: LanguageModelInput, | |
config: Optional[RunnableConfig] = None, | |
*, | |
stop: Optional[list[str]] = None, | |
**kwargs: Any, | |
) -> AIMessage: | |
org_ai_message = await super().ainvoke(input=input) | |
org_content = org_ai_message.content | |
reasoning_content = org_content.split("</think>")[0].replace("<think>", "") | |
content = org_content.split("</think>")[1] | |
if "**JSON Response:**" in content: | |
content = content.split("**JSON Response:**")[-1] | |
return AIMessage(content=content, reasoning_content=reasoning_content) | |
def invoke( | |
self, | |
input: LanguageModelInput, | |
config: Optional[RunnableConfig] = None, | |
*, | |
stop: Optional[list[str]] = None, | |
**kwargs: Any, | |
) -> AIMessage: | |
org_ai_message = super().invoke(input=input) | |
org_content = org_ai_message.content | |
reasoning_content = org_content.split("</think>")[0].replace("<think>", "") | |
content = org_content.split("</think>")[1] | |
if "**JSON Response:**" in content: | |
content = content.split("**JSON Response:**")[-1] | |
return AIMessage(content=content, reasoning_content=reasoning_content) | |
def get_llm_model(provider: str, **kwargs): | |
""" | |
Get LLM model | |
:param provider: LLM provider | |
:param kwargs: | |
:return: | |
""" | |
if provider not in ["ollama", "bedrock"]: | |
env_var = f"{provider.upper()}_API_KEY" | |
api_key = kwargs.get("api_key", "") or os.getenv(env_var, "") | |
if not api_key: | |
provider_display = config.PROVIDER_DISPLAY_NAMES.get(provider, provider.upper()) | |
error_msg = f"💥 {provider_display} API key not found! 🔑 Please set the `{env_var}` environment variable or provide it in the UI." | |
raise ValueError(error_msg) | |
kwargs["api_key"] = api_key | |
if provider == "anthropic": | |
if not kwargs.get("base_url", ""): | |
base_url = "https://api.anthropic.com" | |
else: | |
base_url = kwargs.get("base_url") | |
return ChatAnthropic( | |
model=kwargs.get("model_name", "claude-3-5-sonnet-20241022"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=base_url, | |
api_key=api_key, | |
) | |
elif provider == 'mistral': | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("MISTRAL_ENDPOINT", "https://api.mistral.ai/v1") | |
else: | |
base_url = kwargs.get("base_url") | |
if not kwargs.get("api_key", ""): | |
api_key = os.getenv("MISTRAL_API_KEY", "") | |
else: | |
api_key = kwargs.get("api_key") | |
return ChatMistralAI( | |
model=kwargs.get("model_name", "mistral-large-latest"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=base_url, | |
api_key=api_key, | |
) | |
elif provider == "openai": | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("OPENAI_ENDPOINT", "https://api.openai.com/v1") | |
else: | |
base_url = kwargs.get("base_url") | |
return ChatOpenAI( | |
model=kwargs.get("model_name", "gpt-4o"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=base_url, | |
api_key=api_key, | |
) | |
elif provider == "grok": | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("GROK_ENDPOINT", "https://api.x.ai/v1") | |
else: | |
base_url = kwargs.get("base_url") | |
return ChatOpenAI( | |
model=kwargs.get("model_name", "grok-3"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=base_url, | |
api_key=api_key, | |
) | |
elif provider == "deepseek": | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("DEEPSEEK_ENDPOINT", "") | |
else: | |
base_url = kwargs.get("base_url") | |
if kwargs.get("model_name", "deepseek-chat") == "deepseek-reasoner": | |
return DeepSeekR1ChatOpenAI( | |
model=kwargs.get("model_name", "deepseek-reasoner"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=base_url, | |
api_key=api_key, | |
) | |
else: | |
return ChatOpenAI( | |
model=kwargs.get("model_name", "deepseek-chat"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=base_url, | |
api_key=api_key, | |
) | |
elif provider == "google": | |
return ChatGoogleGenerativeAI( | |
model=kwargs.get("model_name", "gemini-2.0-flash-exp"), | |
temperature=kwargs.get("temperature", 0.0), | |
api_key=api_key, | |
) | |
elif provider == "ollama": | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("OLLAMA_ENDPOINT", "http://localhost:11434") | |
else: | |
base_url = kwargs.get("base_url") | |
if "deepseek-r1" in kwargs.get("model_name", "qwen2.5:7b"): | |
return DeepSeekR1ChatOllama( | |
model=kwargs.get("model_name", "deepseek-r1:14b"), | |
temperature=kwargs.get("temperature", 0.0), | |
num_ctx=kwargs.get("num_ctx", 32000), | |
base_url=base_url, | |
) | |
else: | |
return ChatOllama( | |
model=kwargs.get("model_name", "qwen2.5:7b"), | |
temperature=kwargs.get("temperature", 0.0), | |
num_ctx=kwargs.get("num_ctx", 32000), | |
num_predict=kwargs.get("num_predict", 1024), | |
base_url=base_url, | |
) | |
elif provider == "azure_openai": | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("AZURE_OPENAI_ENDPOINT", "") | |
else: | |
base_url = kwargs.get("base_url") | |
api_version = kwargs.get("api_version", "") or os.getenv("AZURE_OPENAI_API_VERSION", "2025-01-01-preview") | |
return AzureChatOpenAI( | |
model=kwargs.get("model_name", "gpt-4o"), | |
temperature=kwargs.get("temperature", 0.0), | |
api_version=api_version, | |
azure_endpoint=base_url, | |
api_key=api_key, | |
) | |
elif provider == "alibaba": | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("ALIBABA_ENDPOINT", "https://dashscope.aliyuncs.com/compatible-mode/v1") | |
else: | |
base_url = kwargs.get("base_url") | |
return ChatOpenAI( | |
model=kwargs.get("model_name", "qwen-plus"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=base_url, | |
api_key=api_key, | |
) | |
elif provider == "ibm": | |
parameters = { | |
"temperature": kwargs.get("temperature", 0.0), | |
"max_tokens": kwargs.get("num_ctx", 32000) | |
} | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("IBM_ENDPOINT", "https://us-south.ml.cloud.ibm.com") | |
else: | |
base_url = kwargs.get("base_url") | |
return ChatWatsonx( | |
model_id=kwargs.get("model_name", "ibm/granite-vision-3.1-2b-preview"), | |
url=base_url, | |
project_id=os.getenv("IBM_PROJECT_ID"), | |
apikey=os.getenv("IBM_API_KEY"), | |
params=parameters | |
) | |
elif provider == "moonshot": | |
return ChatOpenAI( | |
model=kwargs.get("model_name", "moonshot-v1-32k-vision-preview"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=os.getenv("MOONSHOT_ENDPOINT"), | |
api_key=os.getenv("MOONSHOT_API_KEY"), | |
) | |
elif provider == "unbound": | |
return ChatOpenAI( | |
model=kwargs.get("model_name", "gpt-4o-mini"), | |
temperature=kwargs.get("temperature", 0.0), | |
base_url=os.getenv("UNBOUND_ENDPOINT", "https://api.getunbound.ai"), | |
api_key=api_key, | |
) | |
elif provider == "siliconflow": | |
if not kwargs.get("api_key", ""): | |
api_key = os.getenv("SiliconFLOW_API_KEY", "") | |
else: | |
api_key = kwargs.get("api_key") | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("SiliconFLOW_ENDPOINT", "") | |
else: | |
base_url = kwargs.get("base_url") | |
return ChatOpenAI( | |
api_key=api_key, | |
base_url=base_url, | |
model_name=kwargs.get("model_name", "Qwen/QwQ-32B"), | |
temperature=kwargs.get("temperature", 0.0), | |
) | |
elif provider == "modelscope": | |
if not kwargs.get("api_key", ""): | |
api_key = os.getenv("MODELSCOPE_API_KEY", "") | |
else: | |
api_key = kwargs.get("api_key") | |
if not kwargs.get("base_url", ""): | |
base_url = os.getenv("MODELSCOPE_ENDPOINT", "") | |
else: | |
base_url = kwargs.get("base_url") | |
return ChatOpenAI( | |
api_key=api_key, | |
base_url=base_url, | |
model_name=kwargs.get("model_name", "Qwen/QwQ-32B"), | |
temperature=kwargs.get("temperature", 0.0), | |
) | |
else: | |
raise ValueError(f"Unsupported provider: {provider}") | |