Spaces:
Running
Running
Upload 3 files
Browse files- SushasanSampleData.csv +3 -0
- app.py +66 -0
- requirements.txt +8 -0
SushasanSampleData.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
applicationId,applicationDetail,applicationCategoryName,applicationSubCategoryName,ulbName,wardName
|
2 |
+
1,पानी की पाइपलाइन टूटी हुई है,शिकायत,जल आपूर्ति,नगर पालिका,वार्ड 1
|
3 |
+
2,नई स्ट्रीट लाइट लगाने की मांग,मांग,बिजली व्यवस्था,नगर पालिका,वार्ड 2
|
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
from sklearn.linear_model import LogisticRegression
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.preprocessing import LabelEncoder
|
9 |
+
from imblearn.over_sampling import RandomOverSampler
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_model_and_tokenizer():
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert")
|
14 |
+
model = AutoModel.from_pretrained("ai4bharat/indic-bert")
|
15 |
+
return tokenizer, model
|
16 |
+
|
17 |
+
def get_embeddings(texts, tokenizer, model):
|
18 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model(**inputs)
|
21 |
+
embeddings = outputs.last_hidden_state[:, 0, :] # CLS token
|
22 |
+
return embeddings
|
23 |
+
|
24 |
+
@st.cache_data
|
25 |
+
def load_data():
|
26 |
+
df = pd.read_csv("SushasanSampleData.csv", encoding="utf-8")
|
27 |
+
df['applicationDetail'] = df['applicationDetail'].fillna("")
|
28 |
+
df['applicationCategoryName'] = df['applicationCategoryName'].fillna("अन्य")
|
29 |
+
return df
|
30 |
+
|
31 |
+
@st.cache_resource
|
32 |
+
def preprocess_and_train(df):
|
33 |
+
tokenizer, model = load_model_and_tokenizer()
|
34 |
+
text_embeddings = get_embeddings(df['applicationDetail'].tolist(), tokenizer, model)
|
35 |
+
text_embeddings = text_embeddings.cpu().numpy()
|
36 |
+
|
37 |
+
label_encoder = LabelEncoder()
|
38 |
+
labels = label_encoder.fit_transform(df['applicationCategoryName'])
|
39 |
+
|
40 |
+
ros = RandomOverSampler(random_state=42)
|
41 |
+
X_resampled, y_resampled = ros.fit_resample(text_embeddings, labels)
|
42 |
+
|
43 |
+
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42)
|
44 |
+
|
45 |
+
clf = LogisticRegression(max_iter=1000)
|
46 |
+
clf.fit(X_train, y_train)
|
47 |
+
|
48 |
+
return clf, tokenizer, model, label_encoder
|
49 |
+
|
50 |
+
df = load_data()
|
51 |
+
clf, tokenizer, model, label_encoder = preprocess_and_train(df)
|
52 |
+
|
53 |
+
# Streamlit UI
|
54 |
+
st.title("🇮🇳 Hindi Category Classifier (IndicBERT Powered)")
|
55 |
+
|
56 |
+
user_input = st.text_area("✍️ Enter Application Detail", "")
|
57 |
+
|
58 |
+
if st.button("🔍 Predict"):
|
59 |
+
if user_input.strip() == "":
|
60 |
+
st.warning("Please write something.")
|
61 |
+
else:
|
62 |
+
user_emb = get_embeddings([user_input], tokenizer, model)
|
63 |
+
user_emb = user_emb.cpu().numpy()
|
64 |
+
prediction = clf.predict(user_emb)
|
65 |
+
label = label_encoder.inverse_transform(prediction)[0]
|
66 |
+
st.success(f"🧠 Predicted Category: **{label}**")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
streamlit
|
3 |
+
pandas
|
4 |
+
scikit-learn==1.3.2
|
5 |
+
imbalanced-learn==0.11.0
|
6 |
+
transformers
|
7 |
+
torch
|
8 |
+
sentencepiece
|