Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.linear_model import LogisticRegression
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
from imblearn.over_sampling import RandomOverSampler
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
|
9 |
+
@st.cache_data
|
10 |
+
def load_data():
|
11 |
+
df = pd.read_csv("SushasanSampleData.csv", encoding='utf-8')
|
12 |
+
df = df.drop(columns=['ulbName', 'wardName'])
|
13 |
+
df['applicationId'] = df['applicationId'].astype(str)
|
14 |
+
df['applicationSubCategoryName'] = df['applicationSubCategoryName'].fillna("अन्य")
|
15 |
+
return df
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def train_model(df):
|
19 |
+
tfidf = TfidfVectorizer(max_features=5000)
|
20 |
+
X = tfidf.fit_transform(df['applicationDetail'])
|
21 |
+
|
22 |
+
label_encoder = LabelEncoder()
|
23 |
+
y = label_encoder.fit_transform(df['applicationCategoryName'])
|
24 |
+
|
25 |
+
ros = RandomOverSampler(random_state=42)
|
26 |
+
X_resampled, y_resampled = ros.fit_resample(X, y)
|
27 |
+
|
28 |
+
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42)
|
29 |
+
|
30 |
+
model = LogisticRegression(max_iter=1000)
|
31 |
+
model.fit(X_train, y_train)
|
32 |
+
|
33 |
+
return model, tfidf, label_encoder
|
34 |
+
|
35 |
+
# Load and train
|
36 |
+
df = load_data()
|
37 |
+
model, tfidf, label_encoder = train_model(df)
|
38 |
+
|
39 |
+
# UI
|
40 |
+
st.title("🧾 Hindi Application Category Classifier")
|
41 |
+
st.markdown("Enter a grievance or demand in Hindi. The model will predict whether it is a **मांग** (Demand) or a **शिकायत** (Complaint).")
|
42 |
+
|
43 |
+
user_input = st.text_area("✍️ Application Detail", "")
|
44 |
+
|
45 |
+
if st.button("🔍 Predict Category"):
|
46 |
+
if user_input.strip() == "":
|
47 |
+
st.warning("Please enter some text.")
|
48 |
+
else:
|
49 |
+
input_vector = tfidf.transform([user_input])
|
50 |
+
prediction = model.predict(input_vector)
|
51 |
+
label = label_encoder.inverse_transform(prediction)[0]
|
52 |
+
st.success(f"🧠 Predicted Category: **{label}**")
|