human / app.py
Usmanmarketer's picture
Update app.py
fc170e5 verified
import gradio as gr
from transformers import AutoTokenizer, PegasusForConditionalGeneration
# Load Humaneyes Model from Hugging Face
tokenizer = AutoTokenizer.from_pretrained('Eemansleepdeprived/Humaneyes')
model = PegasusForConditionalGeneration.from_pretrained('Eemansleepdeprived/Humaneyes')
# Ensure the model has a pad_token_id (use eos_token_id if missing)
if model.config.pad_token_id is None:
model.config.pad_token_id = tokenizer.eos_token_id
def humanize_text(ai_text):
if not ai_text.strip():
return "❌ Please enter some text to process."
# Tokenize the input text
inputs = tokenizer(ai_text, return_tensors="pt")
# Set generation parameters to avoid excessively long sequences
outputs = model.generate(
inputs["input_ids"],
max_length=256,
num_beams=5,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Build Gradio UI with a modern layout
with gr.Blocks(theme=gr.themes.Soft(), css=".container {max-width: 700px; margin: auto;}") as demo:
gr.Markdown("# ✨ AI to Human Text Converter ✨")
gr.Markdown("Convert AI-generated text into natural, human-like text!")
with gr.Row():
ai_input = gr.Textbox(
label="Enter AI Text",
placeholder="Type or paste AI-generated text here...",
lines=7
)
btn = gr.Button("πŸš€ Humanize Text", variant="primary")
with gr.Row():
human_output = gr.Textbox(
label="Humanized Output",
interactive=False,
lines=7
)
btn.click(humanize_text, inputs=ai_input, outputs=human_output)
if __name__ == "__main__":
demo.launch()