Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,30 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
-
import subprocess
|
| 7 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 8 |
|
|
|
|
| 9 |
models = {
|
| 10 |
-
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
|
| 11 |
-
|
|
|
|
| 12 |
}
|
| 13 |
|
| 14 |
processors = {
|
| 15 |
-
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
|
|
|
|
|
|
|
| 16 |
}
|
| 17 |
|
| 18 |
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
| 19 |
|
| 20 |
kwargs = {}
|
| 21 |
-
kwargs['torch_dtype'] = torch.bfloat16
|
| 22 |
|
| 23 |
user_prompt = '<|user|>\n'
|
| 24 |
assistant_prompt = '<|assistant|>\n'
|
| 25 |
prompt_suffix = "<|end|>\n"
|
| 26 |
|
| 27 |
-
@spaces.GPU
|
| 28 |
def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
|
| 29 |
model = models[model_id]
|
| 30 |
processor = processors[model_id]
|
|
@@ -32,15 +32,18 @@ def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instr
|
|
| 32 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
| 33 |
image = Image.fromarray(image).convert("RGB")
|
| 34 |
|
| 35 |
-
inputs = processor(prompt, image, return_tensors="pt")
|
| 36 |
-
generate_ids = model.generate(
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
| 41 |
-
response = processor.batch_decode(
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
return response
|
| 45 |
|
| 46 |
css = """
|
|
@@ -66,4 +69,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 66 |
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
| 67 |
|
| 68 |
demo.queue(api_open=False)
|
| 69 |
-
demo.launch(debug=True, show_api=False)
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Model ve işlemci yükleme
|
| 7 |
models = {
|
| 8 |
+
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
"microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto"
|
| 10 |
+
).eval()
|
| 11 |
}
|
| 12 |
|
| 13 |
processors = {
|
| 14 |
+
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
|
| 15 |
+
"microsoft/Phi-3.5-vision-instruct", trust_remote_code=True
|
| 16 |
+
)
|
| 17 |
}
|
| 18 |
|
| 19 |
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
| 20 |
|
| 21 |
kwargs = {}
|
| 22 |
+
kwargs['torch_dtype'] = torch.float32 # CPU üzerinde çalıştığı için bfloat16 yerine float32 kullanılıyor
|
| 23 |
|
| 24 |
user_prompt = '<|user|>\n'
|
| 25 |
assistant_prompt = '<|assistant|>\n'
|
| 26 |
prompt_suffix = "<|end|>\n"
|
| 27 |
|
|
|
|
| 28 |
def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
|
| 29 |
model = models[model_id]
|
| 30 |
processor = processors[model_id]
|
|
|
|
| 32 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
| 33 |
image = Image.fromarray(image).convert("RGB")
|
| 34 |
|
| 35 |
+
inputs = processor(prompt, image, return_tensors="pt") # Cihaz belirtilmedi, varsayılan olarak CPU kullanılır
|
| 36 |
+
generate_ids = model.generate(
|
| 37 |
+
**inputs,
|
| 38 |
+
max_new_tokens=1000,
|
| 39 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 40 |
+
)
|
| 41 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
| 42 |
+
response = processor.batch_decode(
|
| 43 |
+
generate_ids,
|
| 44 |
+
skip_special_tokens=True,
|
| 45 |
+
clean_up_tokenization_spaces=False
|
| 46 |
+
)[0]
|
| 47 |
return response
|
| 48 |
|
| 49 |
css = """
|
|
|
|
| 69 |
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
| 70 |
|
| 71 |
demo.queue(api_open=False)
|
| 72 |
+
demo.launch(debug=True, show_api=False)
|