Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
-
import subprocess
|
7 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
8 |
|
|
|
9 |
models = {
|
10 |
-
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
|
11 |
-
|
|
|
12 |
}
|
13 |
|
14 |
processors = {
|
15 |
-
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
|
|
|
|
|
16 |
}
|
17 |
|
18 |
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
19 |
|
20 |
kwargs = {}
|
21 |
-
kwargs['torch_dtype'] = torch.bfloat16
|
22 |
|
23 |
user_prompt = '<|user|>\n'
|
24 |
assistant_prompt = '<|assistant|>\n'
|
25 |
prompt_suffix = "<|end|>\n"
|
26 |
|
27 |
-
@spaces.GPU
|
28 |
def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
|
29 |
model = models[model_id]
|
30 |
processor = processors[model_id]
|
@@ -32,15 +32,18 @@ def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instr
|
|
32 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
33 |
image = Image.fromarray(image).convert("RGB")
|
34 |
|
35 |
-
inputs = processor(prompt, image, return_tensors="pt")
|
36 |
-
generate_ids = model.generate(
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
41 |
-
response = processor.batch_decode(
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
return response
|
45 |
|
46 |
css = """
|
@@ -66,4 +69,4 @@ with gr.Blocks(css=css) as demo:
|
|
66 |
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
67 |
|
68 |
demo.queue(api_open=False)
|
69 |
-
demo.launch(debug=True, show_api=False)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
|
|
5 |
|
6 |
+
# Model ve işlemci yükleme
|
7 |
models = {
|
8 |
+
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained(
|
9 |
+
"microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto"
|
10 |
+
).eval()
|
11 |
}
|
12 |
|
13 |
processors = {
|
14 |
+
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained(
|
15 |
+
"microsoft/Phi-3.5-vision-instruct", trust_remote_code=True
|
16 |
+
)
|
17 |
}
|
18 |
|
19 |
DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)"
|
20 |
|
21 |
kwargs = {}
|
22 |
+
kwargs['torch_dtype'] = torch.float32 # CPU üzerinde çalıştığı için bfloat16 yerine float32 kullanılıyor
|
23 |
|
24 |
user_prompt = '<|user|>\n'
|
25 |
assistant_prompt = '<|assistant|>\n'
|
26 |
prompt_suffix = "<|end|>\n"
|
27 |
|
|
|
28 |
def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
|
29 |
model = models[model_id]
|
30 |
processor = processors[model_id]
|
|
|
32 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
33 |
image = Image.fromarray(image).convert("RGB")
|
34 |
|
35 |
+
inputs = processor(prompt, image, return_tensors="pt") # Cihaz belirtilmedi, varsayılan olarak CPU kullanılır
|
36 |
+
generate_ids = model.generate(
|
37 |
+
**inputs,
|
38 |
+
max_new_tokens=1000,
|
39 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
40 |
+
)
|
41 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
42 |
+
response = processor.batch_decode(
|
43 |
+
generate_ids,
|
44 |
+
skip_special_tokens=True,
|
45 |
+
clean_up_tokenization_spaces=False
|
46 |
+
)[0]
|
47 |
return response
|
48 |
|
49 |
css = """
|
|
|
69 |
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
|
70 |
|
71 |
demo.queue(api_open=False)
|
72 |
+
demo.launch(debug=True, show_api=False)
|