Spaces:
Running
Running
Commit
·
76578bc
1
Parent(s):
99e4ea3
initial check-in gradio vlm UI
Browse files- app.py +85 -0
- example_images/example_1.jpg +0 -0
app.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import websockets
|
| 3 |
+
import asyncio
|
| 4 |
+
import json
|
| 5 |
+
import base64
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import io
|
| 8 |
+
|
| 9 |
+
async def process_image_stream(image_path, prompt, max_tokens=512):
|
| 10 |
+
"""
|
| 11 |
+
Process image with streaming response via WebSocket
|
| 12 |
+
"""
|
| 13 |
+
if not image_path:
|
| 14 |
+
yield "Please upload an image first."
|
| 15 |
+
return
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
# Read and convert image to base64
|
| 19 |
+
with Image.open(image_path) as img:
|
| 20 |
+
img = img.convert('RGB')
|
| 21 |
+
buffer = io.BytesIO()
|
| 22 |
+
img.save(buffer, format="JPEG")
|
| 23 |
+
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 24 |
+
|
| 25 |
+
# Connect to WebSocket
|
| 26 |
+
async with websockets.connect('wss://nexa-omni.nexa4ai.com/ws/process-image/') as websocket:
|
| 27 |
+
# Send image data and parameters as JSON
|
| 28 |
+
await websocket.send(json.dumps({
|
| 29 |
+
"image": f"data:image/jpeg;base64,{base64_image}",
|
| 30 |
+
"prompt": prompt,
|
| 31 |
+
"task": "instruct", # Fixed to instruct
|
| 32 |
+
"max_tokens": max_tokens
|
| 33 |
+
}))
|
| 34 |
+
|
| 35 |
+
# Initialize response
|
| 36 |
+
response = ""
|
| 37 |
+
|
| 38 |
+
# Receive streaming response
|
| 39 |
+
async for message in websocket:
|
| 40 |
+
try:
|
| 41 |
+
data = json.loads(message)
|
| 42 |
+
if data["status"] == "generating":
|
| 43 |
+
response += data["token"]
|
| 44 |
+
yield response
|
| 45 |
+
elif data["status"] == "complete":
|
| 46 |
+
break
|
| 47 |
+
elif data["status"] == "error":
|
| 48 |
+
yield f"Error: {data['error']}"
|
| 49 |
+
break
|
| 50 |
+
except json.JSONDecodeError:
|
| 51 |
+
continue
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
yield f"Error connecting to server: {str(e)}"
|
| 55 |
+
|
| 56 |
+
# Create Gradio interface
|
| 57 |
+
demo = gr.Interface(
|
| 58 |
+
fn=process_image_stream,
|
| 59 |
+
inputs=[
|
| 60 |
+
gr.Image(type="filepath", label="Upload Image"),
|
| 61 |
+
gr.Textbox(
|
| 62 |
+
label="Question",
|
| 63 |
+
placeholder="Ask a question about the image...",
|
| 64 |
+
value="Describe this image"
|
| 65 |
+
),
|
| 66 |
+
gr.Slider(
|
| 67 |
+
minimum=50,
|
| 68 |
+
maximum=200,
|
| 69 |
+
value=200,
|
| 70 |
+
step=1,
|
| 71 |
+
label="Max Tokens"
|
| 72 |
+
)
|
| 73 |
+
],
|
| 74 |
+
outputs=gr.Textbox(label="Response", interactive=False),
|
| 75 |
+
title="Nexa Omni Vision",
|
| 76 |
+
description="""
|
| 77 |
+
Upload an image and ask questions about it. The model will analyze the image and provide detailed answers to your queries.
|
| 78 |
+
""",
|
| 79 |
+
examples=[
|
| 80 |
+
["example_images/example_1.jpg", "Describe this image", 128],
|
| 81 |
+
]
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|
example_images/example_1.jpg
ADDED
|