Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from einops import rearrange | |
from PIL import Image | |
from utils.image_generation import generate_image_condition | |
from utils.mesh_utils import Mesh | |
from utils.render_utils import render_views | |
from utils.texture_generation import generate_texture | |
import gradio as gr | |
from gradio_litmodel3d import LitModel3D | |
EXAMPLES = [ | |
["examples/birdhouse.glb", True, False, False, False, 42, "First View", "SDXL", False, "A rustic birdhouse featuring a snow-covered roof, wood textures, and two decorative cardinal birds. It has a circular entryway and conveys a winter-themed aesthetic."], | |
["examples/mario.glb", False, False, False, True, 6666, "Third View", "FLUX", True, "Mario, a cartoon character wearing a red cap and blue overalls, with brown hair and a mustache, and white gloves, in a fighting pose. The clothes he wears are not in a reflection mode."], | |
] | |
def tensor_to_pil(tensor, mask=None, normalize: bool = True): | |
""" | |
Convert tensor to PIL Image. | |
:param tensor: torch.Tensor, shape can be (Nv, H, W, C), (Nv, C, H, W), (H, W, C), (C, H, W) | |
:param mask: torch.Tensor, shape same as tensor, effective when C=3 | |
:return: PIL.Image | |
""" | |
# Move to cpu | |
tensor = tensor.detach() | |
if tensor.is_cuda: | |
tensor = tensor.cpu() | |
if mask is not None and mask.is_cuda: | |
mask = mask.cpu() | |
# Convert to float32 | |
tensor = tensor.float() | |
if mask is not None: | |
mask = mask.float() | |
if normalize: | |
tensor = (tensor + 1.0) / 2.0 | |
tensor = torch.clamp(tensor, 0.0, 1.0) | |
if mask is not None: | |
if mask.shape[-1] not in [1, 3]: | |
mask = mask.unsqueeze(-1) | |
tensor = torch.cat([tensor, mask], dim=-1) | |
shape = tensor.shape | |
# 4D: (Nv, H, W, C) or (Nv, C, H, W) | |
if len(shape) == 4: | |
Nv = shape[0] | |
if shape[-1] in [3, 4]: # (Nv, H, W, C) | |
tensor = rearrange(tensor, 'nv h w c -> h (nv w) c') | |
else: # (Nv, C, H, W) | |
tensor = rearrange(tensor, 'nv c h w -> h (nv w) c') | |
# 3D: (H, W, C) or (C, H, W) | |
elif len(shape) == 3: | |
if shape[-1] in [3, 4]: # (H, W, C) | |
tensor = rearrange(tensor, 'h w c -> h w c') | |
else: # (C, H, W) | |
tensor = rearrange(tensor, 'c h w -> h w c') | |
else: | |
raise ValueError(f"Unsupported tensor shape: {shape}") | |
# Convert to numpy | |
np_img = (tensor.numpy() * 255).round().astype(np.uint8) | |
# Create PIL Image | |
if np_img.shape[2] == 3: | |
return Image.fromarray(np_img, mode="RGB") | |
elif np_img.shape[2] == 4: | |
return Image.fromarray(np_img, mode="RGBA") | |
else: | |
raise ValueError("Only support 3 or 4 channel images.") | |
if __name__ == '__main__': | |
with gr.Blocks() as demo: | |
gr.Markdown("# π¨ SeqTex: Generate Mesh Textures in Video Sequence") | |
gr.Markdown(""" | |
## π Welcome to SeqTex! | |
**SeqTex** is a cutting-edge AI system that generates high-quality textures for 3D meshes using image prompts (here we use image generator to get them from textual prompts). | |
Choose to either **try our example models** below or **upload your own 3D mesh** to create stunning textures. | |
""") | |
gr.Markdown("---") | |
gr.Markdown("## π§ Step 1: Upload & Process 3D Mesh") | |
gr.Markdown(""" | |
**π How to prepare your 3D mesh:** | |
- Upload your 3D mesh in **.obj** or **.glb** format | |
- **π‘ Pro Tip**: | |
- For optimal results, ensure your mesh includes only one part with <span style="color:#e74c3c; font-weight:bold;">UV parameterization</span> | |
- Otherwise, we'll combine all parts and generate UV parameterization using *xAtlas* (may take longer for high-poly meshes; may also fail for certain meshes) | |
- **β οΈ Important**: We recommend adjusting your model using *Mesh Orientation Adjustments* to be **Z-UP oriented** for best results | |
""") | |
position_map_tensor, normal_map_tensor, position_images_tensor, normal_images_tensor, mask_images_tensor, w2cs, mesh, mvp_matrix = gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State(), gr.State() | |
# fixed_texture_map = Image.open("image.webp").convert("RGB") | |
# Step 1 | |
with gr.Row(): | |
with gr.Column(): | |
mesh_upload = gr.File(label="π Upload 3D Mesh", file_types=[".obj", ".glb"]) | |
# uv_tool = gr.Radio(["xAtlas", "UVAtlas"], label="UV parameterizer", value="xAtlas") | |
gr.Markdown("**π Mesh Orientation Adjustments** (if needed):") | |
y2z = gr.Checkbox(label="Y β Z Transform", value=False, info="Rotate: Y becomes Z, -Z becomes Y") | |
y2x = gr.Checkbox(label="Y β X Transform", value=False, info="Rotate: Y becomes X, -X becomes Y") | |
z2x = gr.Checkbox(label="Z β X Transform", value=False, info="Rotate: Z becomes X, -X becomes Z") | |
upside_down = gr.Checkbox(label="π Flip Vertically", value=False, info="Fix upside-down mesh orientation") | |
with gr.Column(): | |
step1_button = gr.Button("π Process Mesh & Generate Views", variant="primary") | |
step1_progress = gr.Textbox(label="π Processing Status", interactive=False) | |
model_input = gr.Model3D(label="π Processed 3D Model", height=500) | |
with gr.Row(equal_height=True): | |
rgb_views = gr.Image(label="π· Generated Views (Front, Back, Left, Right)", type="pil", scale=3) | |
position_map = gr.Image(label="πΊοΈ Position Map", type="pil", scale=1) | |
normal_map = gr.Image(label="π§ Normal Map", type="pil", scale=1) | |
step1_button.click( | |
Mesh.process, | |
inputs=[mesh_upload, gr.State("xAtlas"), y2z, y2x, z2x, upside_down], | |
outputs=[position_map_tensor, normal_map_tensor, position_images_tensor, normal_images_tensor, mask_images_tensor, w2cs, mesh, mvp_matrix, step1_progress] | |
).then( | |
tensor_to_pil, | |
inputs=[normal_images_tensor, mask_images_tensor], | |
outputs=[rgb_views] | |
).then( | |
tensor_to_pil, | |
inputs=[position_map_tensor], | |
outputs=[position_map] | |
).then( | |
tensor_to_pil, | |
inputs=[normal_map_tensor], | |
outputs=[normal_map] | |
).then( | |
Mesh.export, | |
inputs=[mesh], | |
outputs=[model_input] | |
) | |
# Step 2 | |
gr.Markdown("---") | |
gr.Markdown("## ποΈ Step 2: Select View & Generate Image Condition") | |
gr.Markdown(""" | |
**π How to generate image condition:** | |
- Your mesh will be rendered from **four viewpoints** (front, back, left, right) | |
- Choose **one view** as your image condition | |
- Enter a **descriptive text prompt** for the desired texture | |
- Select your preferred AI model: | |
- <span style="color:#27ae60; font-weight:bold;">π― SDXL</span>: Fast generation with depth + normal control, better details | |
- <span style="color:#3498db; font-weight:bold;">β‘ FLUX</span>: High-quality generation with depth control (slower due to CPU offloading). Better work with **Edge Refinement** | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
img_condition_seed = gr.Number(label="π² Random Seed", minimum=0, maximum=9999, step=1, value=42, info="Change for different results") | |
selected_view = gr.Radio(["First View", "Second View", "Third View", "Fourth View"], label="π Camera View", value="First View", info="Choose which viewpoint to use as reference") | |
with gr.Row(): | |
model_choice = gr.Radio(["SDXL", "FLUX"], label="π€ AI Model", value="SDXL", info="SDXL: Fast, depth+normal control | FLUX: High-quality, slower processing") | |
edge_refinement = gr.Checkbox(label="β¨ Edge Refinement", value=True, info="Smooth boundary artifacts (recommended for cleaner results)") | |
text_prompt = gr.Textbox(label="π¬ Texture Description", placeholder="Describe the desired texture appearance (e.g., 'rustic wooden surface with weathered paint')", lines=2) | |
step2_button = gr.Button("π― Generate Image Condition", variant="primary") | |
step2_progress = gr.Textbox(label="π Generation Status", interactive=False) | |
with gr.Column(): | |
condition_image = gr.Image(label="πΌοΈ Generated Image Condition", type="pil") # , interactive=False | |
step2_button.click( | |
generate_image_condition, | |
inputs=[position_images_tensor, normal_images_tensor, mask_images_tensor, w2cs, text_prompt, selected_view, img_condition_seed, model_choice, edge_refinement], | |
outputs=[condition_image, step2_progress], | |
concurrency_id="gpu_intensive" | |
) | |
# Step 3 | |
gr.Markdown("---") | |
gr.Markdown("## π¨ Step 3: Generate Final Texture") | |
gr.Markdown(""" | |
**π How to generate final texture:** | |
- The **SeqTex pipeline** will create a complete texture map for your model | |
- View the results from multiple angles and download your textured 3D model (the viewport is a little bit dark) | |
""") | |
texture_map_tensor, mv_out_tensor = gr.State(), gr.State() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
step3_button = gr.Button("π¨ Generate Final Texture", variant="primary") | |
step3_progress = gr.Textbox(label="π Texture Generation Status", interactive=False) | |
texture_map = gr.Image(label="π Generated Texture Map", interactive=False) | |
with gr.Column(scale=2): | |
rendered_imgs = gr.Image(label="πΌοΈ Final Rendered Views") | |
mv_branch_imgs = gr.Image(label="πΌοΈ SeqTex Direct Output") | |
with gr.Column(scale=1.5): | |
# model_display = gr.Model3D(label="π Final Textured Model", height=500) | |
model_display = LitModel3D(label="Model with Texture", | |
exposure=30.0, | |
height=500) | |
step3_button.click( | |
generate_texture, | |
inputs=[position_map_tensor, normal_map_tensor, position_images_tensor, normal_images_tensor, condition_image, text_prompt, selected_view], | |
outputs=[texture_map_tensor, mv_out_tensor, step3_progress], | |
concurrency_id="gpu_intensive" | |
).then( | |
tensor_to_pil, | |
inputs=[texture_map_tensor, gr.State(None), gr.State(False)], | |
outputs=[texture_map] | |
).then( | |
tensor_to_pil, | |
inputs=[mv_out_tensor, gr.State(None), gr.State(False)], | |
outputs=[mv_branch_imgs] | |
).then( | |
render_views, | |
inputs=[mesh, texture_map_tensor, mvp_matrix], | |
outputs=[rendered_imgs] | |
).then( | |
Mesh.export, | |
inputs=[mesh, gr.State(None), texture_map], | |
outputs=[model_display] | |
) | |
# Add example inputs for user convenience | |
gr.Markdown("---") | |
gr.Markdown("## π Try Our Examples") | |
gr.Markdown("**Quick Start**: Click on any example below to see SeqTex in action with pre-configured settings!") | |
gr.Examples( | |
examples=EXAMPLES, | |
inputs=[mesh_upload, y2z, y2x, z2x, upside_down, img_condition_seed, selected_view, model_choice, edge_refinement, text_prompt], | |
cache_examples=False | |
) | |
demo.launch(server_name="0.0.0.0", server_port=52424) |