Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,540 Bytes
af15ec4 fc91ae0 af15ec4 c60b074 2c25d73 af15ec4 2c25d73 af15ec4 c60b074 2c25d73 c60b074 2c25d73 c038d42 2c25d73 af15ec4 fc91ae0 af15ec4 2c25d73 854df12 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 fc91ae0 af15ec4 fc91ae0 af15ec4 fc91ae0 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 f58f6bd fc91ae0 bd1714d fc91ae0 2c25d73 d180412 2c25d73 d180412 2c25d73 d180412 bd1714d d180412 2c25d73 d180412 2c25d73 b98ab62 2c25d73 af15ec4 2c25d73 b98ab62 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 af15ec4 2c25d73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# --- Environment Variables Used ---
# DISABLE_ZEROGPU: Set to 'true' or '1' to disable @spaces.GPU decorator (for Hugging Face Spaces).
# TRIPOSG_CODE_PATH: Absolute path to a local directory containing the checked-out TripoSG repository (scribble branch).
# GITHUB_TOKEN: A GitHub token used for cloning the TripoSG repo if TRIPOSG_CODE_PATH is not provided.
# WEIGHTS_PATH: Absolute path to a local directory containing the TripoSG-scribble model weights.
# HF_TOKEN: A Hugging Face Hub token used for downloading weights/models if local paths (WEIGHTS_PATH, WD14_CONVNEXT_PATH) are not provided.
# WD14_CONVNEXT_PATH: Absolute path to a local directory containing the WD14 ConvNeXT tagger model.onnx and selected_tags.csv.
# ----------------------------------
import gradio as gr
import os
import sys
import subprocess
from huggingface_hub import snapshot_download, HfFolder, hf_hub_download
import random # Import random for seed generation
import re # For WD14 tag processing
import cv2 # For WD14 preprocessing
import pandas as pd # For WD14 tags
from onnxruntime import InferenceSession # For WD14 model
from typing import Mapping, Tuple, Dict # Type hints
# --- Repo Setup ---
DEFAULT_REPO_DIR = "./TripoSG-repo" # Directory to clone into if not using local path
REPO_GIT_URL = "github.com/VAST-AI-Research/TripoSG.git" # Base URL without schema/token
BRANCH = "scribble"
code_source_path = None
# Option 1: Use local path if TRIPOSG_CODE_PATH env var is set
local_code_path = os.environ.get("TRIPOSG_CODE_PATH")
if local_code_path:
print(f"Attempting to use local code path specified by TRIPOSG_CODE_PATH: {local_code_path}")
# Basic check: does it exist and seem like a git repo (has .git)?
if os.path.isdir(local_code_path) and os.path.isdir(os.path.join(local_code_path, ".git")):
code_source_path = os.path.abspath(local_code_path)
print(f"Using local TripoSG code directory: {code_source_path}")
# You might want to add a check here to verify the branch is correct, e.g.:
# try:
# current_branch = subprocess.run(["git", "rev-parse", "--abbrev-ref", "HEAD"], cwd=code_source_path, check=True, capture_output=True, text=True).stdout.strip()
# if current_branch != BRANCH:
# print(f"Warning: Local repo is on branch '{current_branch}', expected '{BRANCH}'. Attempting checkout...")
# subprocess.run(["git", "checkout", BRANCH], cwd=code_source_path, check=True)
# except Exception as e:
# print(f"Warning: Could not verify or checkout branch '{BRANCH}' in {code_source_path}: {e}")
else:
print(f"Warning: TRIPOSG_CODE_PATH '{local_code_path}' not found or not a valid git repository directory. Falling back to cloning.")
# Option 2: Clone from GitHub (if local path not used or invalid)
if not code_source_path:
repo_url_to_clone = f"https://{REPO_GIT_URL}"
github_token = os.environ.get("GITHUB_TOKEN")
if github_token:
print("Using GITHUB_TOKEN for repository cloning.")
repo_url_to_clone = f"https://{github_token}@{REPO_GIT_URL}"
else:
print("No GITHUB_TOKEN found. Using public HTTPS for cloning.")
repo_target_dir = os.path.abspath(DEFAULT_REPO_DIR)
if not os.path.exists(repo_target_dir):
print(f"Cloning TripoSG repository ({BRANCH} branch) into {repo_target_dir}...")
try:
subprocess.run(["git", "clone", "--branch", BRANCH, "--depth", "1", repo_url_to_clone, repo_target_dir], check=True)
code_source_path = repo_target_dir
print("Repository cloned successfully.")
except subprocess.CalledProcessError as e:
print(f"Error cloning repository: {e}")
print("Please ensure the URL is correct, the branch '{BRANCH}' exists, and you have access rights (or provide a GITHUB_TOKEN).")
sys.exit(1)
except Exception as e:
print(f"An unexpected error occurred during cloning: {e}")
sys.exit(1)
else:
print(f"Directory {repo_target_dir} already exists. Assuming it contains the correct code/branch.")
# Optional: Add checks here like git pull or verifying the branch
code_source_path = repo_target_dir
if not code_source_path:
print("Error: Could not determine TripoSG code source path.")
sys.exit(1)
# Add repo to Python path
sys.path.insert(0, code_source_path) # Use the determined absolute path
print(f"Added {code_source_path} to sys.path")
# --- End Repo Setup ---
# --- ZeroGPU Setup ---
DISABLE_ZEROGPU = os.environ.get("DISABLE_ZEROGPU", "false").lower() in ("true", "1", "t")
ENABLE_ZEROGPU = not DISABLE_ZEROGPU
print(f"ZeroGPU Enabled: {ENABLE_ZEROGPU}")
# --- End ZeroGPU Setup ---
if ENABLE_ZEROGPU:
import spaces # Import spaces for ZeroGPU
from PIL import Image
import numpy as np
import torch
from triposg.pipelines.pipeline_triposg_scribble import TripoSGScribblePipeline
import tempfile
# --- Weight Loading Logic ---
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
HfFolder.save_token(HF_TOKEN)
HUGGING_FACE_REPO_ID = "VAST-AI/TripoSG-scribble"
DEFAULT_CACHE_PATH = "./pretrained_weights/TripoSG-scribble"
# Option 1: Use local path if WEIGHTS_PATH env var is set
local_weights_path = os.environ.get("WEIGHTS_PATH")
model_load_path = None
if local_weights_path:
print(f"Attempting to load weights from local path specified by WEIGHTS_PATH: {local_weights_path}")
if os.path.isdir(local_weights_path):
model_load_path = local_weights_path
print(f"Using local weights directory: {model_load_path}")
else:
print(f"Warning: WEIGHTS_PATH '{local_weights_path}' not found or not a directory. Falling back to Hugging Face download.")
# Option 2: Download from Hugging Face (if local path not used or invalid)
if not model_load_path:
hf_token = os.environ.get("HF_TOKEN")
print(f"Attempting to download weights from Hugging Face repo: {HUGGING_FACE_REPO_ID}")
if hf_token:
print("Using Hugging Face token for download.")
auth_token = hf_token
else:
print("No Hugging Face token found. Attempting public download.")
auth_token = None
try:
model_load_path = snapshot_download(
repo_id=HUGGING_FACE_REPO_ID,
local_dir=DEFAULT_CACHE_PATH,
local_dir_use_symlinks=False, # Recommended for Spaces
token=auth_token,
# revision="main" # Specify branch/commit if needed
)
print(f"Weights downloaded/cached to: {model_load_path}")
except Exception as e:
print(f"Error downloading weights from Hugging Face: {e}")
print("Please ensure the repository exists and is accessible, or provide a valid WEIGHTS_PATH.")
sys.exit(1) # Exit if weights cannot be loaded
# Load the pipeline using the determined path
print(f"Loading pipeline from: {model_load_path}")
pipe = TripoSGScribblePipeline.from_pretrained(model_load_path)
pipe.to(dtype=torch.float16, device="cuda")
print("Pipeline loaded.")
# --- End Weight Loading Logic ---
# Create a white background image and a transparent layer for drawing
canvas_width, canvas_height = 512, 512
initial_background = Image.new("RGB", (canvas_width, canvas_height), color="white")
initial_layer = Image.new("RGBA", (canvas_width, canvas_height), color=(0, 0, 0, 0)) # Transparent layer
# Prepare the initial value dictionary for ImageEditor
initial_value = {
"background": initial_background,
"layers": [initial_layer], # Add the transparent layer
"composite": None
}
# --- ZeroGPU Setup ---
# ... existing ZeroGPU setup ...
MAX_SEED = np.iinfo(np.int32).max
def get_random_seed():
return random.randint(0, MAX_SEED)
# --- WD14 Helper Functions ---
def make_square(img, target_size):
old_size = img.shape[:2]
desired_size = max(old_size)
desired_size = max(desired_size, target_size)
delta_w = desired_size - old_size[1]
delta_h = desired_size - old_size[0]
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
left, right = delta_w // 2, delta_w - (delta_w // 2)
color = [255, 255, 255] # White padding
return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
def smart_resize(img, size):
if img.shape[0] > size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
elif img.shape[0] < size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
return img
RE_SPECIAL = re.compile(r'([\()])')
# --- WD14 Tagger Class ---
class WaifuDiffusionInterrogator:
def __init__(
self,
repo: str,
model_filename='model.onnx',
tags_filename='selected_tags.csv',
local_model_dir: str | None = None # Added local path option
) -> None:
self.__repo = repo
self.__model_filename = model_filename
self.__tags_filename = tags_filename
self.__local_model_dir = local_model_dir
self.__initialized = False
self._model = None
self._tags = None
def _init(self) -> None:
if self.__initialized:
return
model_path = None
tags_path = None
if self.__local_model_dir:
print(f"WD14: Attempting to load from local directory: {self.__local_model_dir}")
potential_model_path = os.path.join(self.__local_model_dir, self.__model_filename)
potential_tags_path = os.path.join(self.__local_model_dir, self.__tags_filename)
if os.path.exists(potential_model_path) and os.path.exists(potential_tags_path):
model_path = potential_model_path
tags_path = potential_tags_path
print("WD14: Found local model and tags file.")
else:
print("WD14: Local files not found. Falling back to Hugging Face download.")
if model_path is None or tags_path is None:
print(f"WD14: Downloading from repo: {self.__repo}")
hf_token = os.environ.get("HF_TOKEN") # Reuse HF token if available
try:
model_path = hf_hub_download(self.__repo, filename=self.__model_filename, token=hf_token)
tags_path = hf_hub_download(self.__repo, filename=self.__tags_filename, token=hf_token)
print("WD14: Download complete.")
except Exception as e:
print(f"WD14: Error downloading from Hugging Face: {e}")
# Decide how to handle this - maybe raise error or disable tagging?
# For now, we'll let it fail later if model is None
return # Cannot initialize
try:
self._model = InferenceSession(str(model_path))
self._tags = pd.read_csv(tags_path)
self.__initialized = True
print("WD14: Tagger initialized successfully.")
except Exception as e:
print(f"WD14: Error initializing ONNX session or reading tags: {e}")
def _calculation(self, image: Image.Image) -> pd.DataFrame | None:
self._init()
if not self._model or self._tags is None:
print("WD14: Tagger not initialized.")
return None
_, height, _, _ = self._model.get_inputs()[0].shape
image = image.convert('RGBA')
new_image = Image.new('RGBA', image.size, 'WHITE')
new_image.paste(image, mask=image)
image = new_image.convert('RGB')
image = np.asarray(image)
image = image[:, :, ::-1]
image = make_square(image, height)
image = smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
input_name = self._model.get_inputs()[0].name
label_name = self._model.get_outputs()[0].name
confidence = self._model.run([label_name], {input_name: image})[0]
full_tags = self._tags[['name', 'category']].copy()
full_tags['confidence'] = confidence[0]
return full_tags
def interrogate(self, image: Image.Image) -> Tuple[Dict[str, float], Dict[str, float]] | None:
full_tags = self._calculation(image)
if full_tags is None:
return None
ratings = dict(full_tags[full_tags['category'] == 9][['name', 'confidence']].values)
tags = dict(full_tags[full_tags['category'] != 9][['name', 'confidence']].values)
return ratings, tags
# --- Instantiate WD14 Tagger ---
WD14_CONVNEXT_REPO = 'SmilingWolf/wd-v1-4-convnext-tagger'
wd14_local_path = os.environ.get("WD14_CONVNEXT_PATH")
wd14_tagger = WaifuDiffusionInterrogator(repo=WD14_CONVNEXT_REPO, local_model_dir=wd14_local_path)
# --- Helper to format tags ---
def format_wd14_tags(tags: Dict[str, float], threshold: float = 0.35) -> str:
filtered_tags = {
tag: score for tag, score in tags.items()
if score >= threshold and "background" not in tag and tag not in {"monochrome", "greyscale", "no_humans", "comic", "solo"}
}
print(filtered_tags)
# Sort by score descending, then alphabetically
tags_pairs = sorted(filtered_tags.items(), key=lambda x: (-x[1], x[0]))
text_items = [tag.replace('_', ' ') for tag, score in tags_pairs]
return ', '.join(text_items)
# Apply decorator conditionally
@spaces.GPU() if ENABLE_ZEROGPU else lambda func: func
def generate_3d(scribble_image_dict, prompt, scribble_confidence, text_confidence, seed):
print("Generating 3D model...")
input_prompt = prompt # Keep track of original prompt for return on early exit
if scribble_image_dict is None or scribble_image_dict.get("composite") is None:
print("No scribble image provided.")
return None, input_prompt # Return None for model, original prompt
# --- Prompt Handling ---
input_prompt = prompt.strip()
if not input_prompt:
print("Prompt is empty, attempting WD14 tagging...")
try:
# Get the user drawing (black on white) for tagging
user_drawing_img = Image.fromarray(scribble_image_dict["composite"]).convert("RGB")
tag_results = wd14_tagger.interrogate(user_drawing_img)
if tag_results:
ratings, tags = tag_results
generated_prompt = format_wd14_tags(tags) # Use default threshold
if generated_prompt:
print(f"WD14 generated prompt: {generated_prompt}")
input_prompt = generated_prompt
else:
print("WD14 tagging did not produce tags above threshold.")
input_prompt = "3d object" # Fallback prompt
else:
print("WD14 tagging failed or tagger not initialized.")
input_prompt = "3d object" # Fallback prompt
except Exception as e:
print(f"Error during WD14 tagging: {e}")
input_prompt = "3d object" # Fallback prompt
else:
print(f"Using user provided prompt: {input_prompt}")
# --- End Prompt Handling ---
# --- Seed Handling ---
current_seed = int(seed)
print(f"Using seed: {current_seed}")
# --- End Seed Handling ---
# --- Image Preprocessing for TripoSG ---
# Get the composite image again (safer in case dict is modified)
# The composite might be RGBA if a layer was involved, ensure RGB for processing
image_for_triposg = Image.fromarray(scribble_image_dict["composite"]).convert("RGB")
# Preprocess the image: invert colors (black on white -> white on black)
image_np = np.array(image_for_triposg)
processed_image_np = 255 - image_np
processed_image = Image.fromarray(processed_image_np)
print("Image preprocessed for TripoSG.")
# --- End Image Preprocessing ---
# --- Generator Setup ---
generator = torch.Generator(device='cuda').manual_seed(current_seed)
# --- End Generator Setup ---
# --- Run Pipeline ---
print("Running pipeline...")
try:
out = pipe(
processed_image,
prompt=input_prompt, # Use the potentially generated prompt
num_tokens=512, # Default value from example
guidance_scale=0, # Default value from example
num_inference_steps=16, # Default value from example
attention_kwargs={
"cross_attention_scale": text_confidence,
"cross_attention_2_scale": scribble_confidence
},
generator=generator,
use_flash_decoder=False, # Default value from example
dense_octree_depth=8, # Default value from example
hierarchical_octree_depth=8 # Default value from example
)
print("Pipeline finished.")
except Exception as e:
print(f"Error during pipeline execution: {e}")
return None, input_prompt # Return None for model, the prompt used
# --- End Run Pipeline ---
# --- Save Output ---
if out.meshes and len(out.meshes) > 0:
# Create a temporary file with .glb extension
with tempfile.NamedTemporaryFile(suffix=".glb", delete=False) as tmpfile:
output_path = tmpfile.name
out.meshes[0].export(output_path)
print(f"Mesh saved to temporary file: {output_path}")
return output_path, input_prompt # Return model path and the prompt used
else:
print("Pipeline did not generate any meshes.")
return None, input_prompt # Return None for model, the prompt used
# --- End Save Output ---
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# TripoSG Scribble!!")
gr.Markdown("""
### [GitHub](https://github.com/VAST-AI-Research/TripoSG) | [Paper](https://arxiv.org/abs/2502.06608) | [Project Page](https://yg256li.github.io/TripoSG-Page/)
### Fast 3D shape prototyping with simple scribble and text prompt. Presented by [Tripo](https://www.tripo3d.ai/).
- For local deployment, simply clone this space, set up the environment and run with DISABLE_ZEROGPU=1.
- Feel free to tune the scribble confidence to balance fidelity and alignment :)
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.ImageEditor(
label="Scribble Input (Draw Black on White)",
value=initial_value,
image_mode="RGB",
brush=gr.Brush(default_color="#000000", color_mode="fixed", default_size=4),
interactive=True,
eraser=gr.Brush(default_color="#FFFFFF", color_mode="fixed", default_size=20),
canvas_size=(canvas_width, canvas_height),
fixed_canvas=True,
height=canvas_height + 128,
)
with gr.Column(scale=1):
with gr.Row():
prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., a cat", scale=3)
seed_input = gr.Number(label="Seed", value=0, precision=0, scale=1)
with gr.Row(): # Add row for sliders
confidence_input = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Scribble Confidence")
prompt_confidence_input = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Prompt Confidence")
with gr.Row():
submit_button = gr.Button("Generate 3D Model", variant="primary", scale=1)
lucky_button = gr.Button("I'm Feeling Lucky", scale=1)
model_output = gr.Model3D(label="Generated 3D Model", interactive=False, height=384)
# Define the inputs for the main generation function
gen_inputs = [image_input, prompt_input, confidence_input, prompt_confidence_input, seed_input] # Added text_confidence_input
submit_button.click(
fn=generate_3d,
inputs=gen_inputs,
outputs=[model_output, prompt_input] # Add prompt_input to outputs
)
# Define inputs for the lucky button (same as main button for the final call)
lucky_gen_inputs = [image_input, prompt_input, confidence_input, prompt_confidence_input, seed_input] # Added text_confidence_input
lucky_button.click(
fn=get_random_seed,
inputs=[],
outputs=[seed_input]
).then(
fn=generate_3d,
inputs=lucky_gen_inputs,
outputs=[model_output, prompt_input] # Add prompt_input to outputs
)
# Launch with queue enabled if using ZeroGPU
print("Launching Gradio interface...")
demo.launch(share=False, server_name="0.0.0.0")
print("Gradio interface launched.")
|