Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
import gc # Added garbage collector
|
7 |
+
from collections.abc import Iterator
|
8 |
+
from threading import Thread
|
9 |
+
import json
|
10 |
+
import requests
|
11 |
+
import cv2
|
12 |
+
import base64
|
13 |
+
import logging
|
14 |
+
import time
|
15 |
+
from urllib.parse import quote # Added for URL encoding
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
import spaces
|
19 |
+
import torch
|
20 |
+
from loguru import logger
|
21 |
+
from PIL import Image
|
22 |
+
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
23 |
+
|
24 |
+
# CSV/TXT/PDF analysis
|
25 |
+
import pandas as pd
|
26 |
+
import PyPDF2
|
27 |
+
|
28 |
+
# =============================================================================
|
29 |
+
# (New) Image API related functions
|
30 |
+
# =============================================================================
|
31 |
+
from gradio_client import Client
|
32 |
+
|
33 |
+
API_URL = "http://211.233.58.201:7896"
|
34 |
+
|
35 |
+
logging.basicConfig(
|
36 |
+
level=logging.DEBUG,
|
37 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
38 |
+
)
|
39 |
+
|
40 |
+
def test_api_connection() -> str:
|
41 |
+
"""Test API server connection"""
|
42 |
+
try:
|
43 |
+
client = Client(API_URL)
|
44 |
+
return "API connection successful: Operating normally"
|
45 |
+
except Exception as e:
|
46 |
+
logging.error(f"API connection test failed: {e}")
|
47 |
+
return f"API connection failed: {e}"
|
48 |
+
|
49 |
+
def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float):
|
50 |
+
"""Image generation function (flexible return types)"""
|
51 |
+
if not prompt:
|
52 |
+
return None, "Error: A prompt is required."
|
53 |
+
try:
|
54 |
+
logging.info(f"Calling image generation API with prompt: {prompt}")
|
55 |
+
|
56 |
+
client = Client(API_URL)
|
57 |
+
result = client.predict(
|
58 |
+
prompt=prompt,
|
59 |
+
width=int(width),
|
60 |
+
height=int(height),
|
61 |
+
guidance=float(guidance),
|
62 |
+
inference_steps=int(inference_steps),
|
63 |
+
seed=int(seed),
|
64 |
+
do_img2img=False,
|
65 |
+
init_image=None,
|
66 |
+
image2image_strength=0.8,
|
67 |
+
resize_img=True,
|
68 |
+
api_name="/generate_image"
|
69 |
+
)
|
70 |
+
|
71 |
+
logging.info(f"Image generation result: {type(result)}, length: {len(result) if isinstance(result, (list, tuple)) else 'unknown'}")
|
72 |
+
|
73 |
+
# Handle cases where the result is a tuple or list
|
74 |
+
if isinstance(result, (list, tuple)) and len(result) > 0:
|
75 |
+
image_data = result[0] # The first element is the image data
|
76 |
+
seed_info = result[1] if len(result) > 1 else "Unknown seed"
|
77 |
+
return image_data, seed_info
|
78 |
+
else:
|
79 |
+
# When a single value is returned
|
80 |
+
return result, "Unknown seed"
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logging.error(f"Image generation failed: {str(e)}")
|
84 |
+
return None, f"Error: {str(e)}"
|
85 |
+
|
86 |
+
# Base64 padding fix function
|
87 |
+
def fix_base64_padding(data):
|
88 |
+
"""Fix the padding of a Base64 string."""
|
89 |
+
if isinstance(data, bytes):
|
90 |
+
data = data.decode('utf-8')
|
91 |
+
|
92 |
+
# Remove the prefix if present
|
93 |
+
if "base64," in data:
|
94 |
+
data = data.split("base64,", 1)[1]
|
95 |
+
|
96 |
+
# Add padding characters (to make the length a multiple of 4)
|
97 |
+
missing_padding = len(data) % 4
|
98 |
+
if missing_padding:
|
99 |
+
data += '=' * (4 - missing_padding)
|
100 |
+
|
101 |
+
return data
|
102 |
+
|
103 |
+
# =============================================================================
|
104 |
+
# Memory cleanup function
|
105 |
+
# =============================================================================
|
106 |
+
def clear_cuda_cache():
|
107 |
+
"""Explicitly clear the CUDA cache."""
|
108 |
+
if torch.cuda.is_available():
|
109 |
+
torch.cuda.empty_cache()
|
110 |
+
gc.collect()
|
111 |
+
|
112 |
+
# =============================================================================
|
113 |
+
# SerpHouse related functions
|
114 |
+
# =============================================================================
|
115 |
+
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
116 |
+
|
117 |
+
def extract_keywords(text: str, top_k: int = 5) -> str:
|
118 |
+
"""Simple keyword extraction: only keep English, Korean, numbers, and spaces."""
|
119 |
+
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text)
|
120 |
+
tokens = text.split()
|
121 |
+
return " ".join(tokens[:top_k])
|
122 |
+
|
123 |
+
def do_web_search(query: str) -> str:
|
124 |
+
"""Call the SerpHouse LIVE API to return Markdown formatted search results"""
|
125 |
+
try:
|
126 |
+
url = "https://api.serphouse.com/serp/live"
|
127 |
+
params = {
|
128 |
+
"q": query,
|
129 |
+
"domain": "google.com",
|
130 |
+
"serp_type": "web",
|
131 |
+
"device": "desktop",
|
132 |
+
"lang": "en",
|
133 |
+
"num": "20"
|
134 |
+
}
|
135 |
+
headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"}
|
136 |
+
logger.info(f"Calling SerpHouse API with query: {query}")
|
137 |
+
response = requests.get(url, headers=headers, params=params, timeout=60)
|
138 |
+
response.raise_for_status()
|
139 |
+
data = response.json()
|
140 |
+
results = data.get("results", {})
|
141 |
+
organic = None
|
142 |
+
if isinstance(results, dict) and "organic" in results:
|
143 |
+
organic = results["organic"]
|
144 |
+
elif isinstance(results, dict) and "results" in results:
|
145 |
+
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
146 |
+
organic = results["results"]["organic"]
|
147 |
+
elif "organic" in data:
|
148 |
+
organic = data["organic"]
|
149 |
+
if not organic:
|
150 |
+
logger.warning("Organic results not found in response.")
|
151 |
+
return "No web search results available or the API response structure is unexpected."
|
152 |
+
max_results = min(20, len(organic))
|
153 |
+
limited_organic = organic[:max_results]
|
154 |
+
summary_lines = []
|
155 |
+
for idx, item in enumerate(limited_organic, start=1):
|
156 |
+
title = item.get("title", "No Title")
|
157 |
+
link = item.get("link", "#")
|
158 |
+
snippet = item.get("snippet", "No Description")
|
159 |
+
displayed_link = item.get("displayed_link", link)
|
160 |
+
summary_lines.append(
|
161 |
+
f"### Result {idx}: {title}\n\n"
|
162 |
+
f"{snippet}\n\n"
|
163 |
+
f"**Source**: [{displayed_link}]({link})\n\n"
|
164 |
+
f"---\n"
|
165 |
+
)
|
166 |
+
instructions = """
|
167 |
+
# Web Search Results
|
168 |
+
Below are the search results. Use this information to answer the query:
|
169 |
+
1. Refer to each result's title, description, and source link.
|
170 |
+
2. In your answer, explicitly cite the source of any used information (e.g., "[Source Title](link)").
|
171 |
+
3. Include the actual source links in your response.
|
172 |
+
4. Synthesize information from multiple sources.
|
173 |
+
5. At the end include a "References:" section listing the main source links.
|
174 |
+
"""
|
175 |
+
return instructions + "\n".join(summary_lines)
|
176 |
+
except Exception as e:
|
177 |
+
logger.error(f"Web search failed: {e}")
|
178 |
+
return f"Web search failed: {str(e)}"
|
179 |
+
|
180 |
+
# =============================================================================
|
181 |
+
# Model and processor loading
|
182 |
+
# =============================================================================
|
183 |
+
MAX_CONTENT_CHARS = 2000
|
184 |
+
MAX_INPUT_LENGTH = 2096
|
185 |
+
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
|
186 |
+
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
187 |
+
model = Gemma3ForConditionalGeneration.from_pretrained(
|
188 |
+
model_id,
|
189 |
+
device_map="auto",
|
190 |
+
torch_dtype=torch.bfloat16,
|
191 |
+
attn_implementation="eager"
|
192 |
+
)
|
193 |
+
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
194 |
+
|
195 |
+
# =============================================================================
|
196 |
+
# CSV, TXT, PDF analysis functions
|
197 |
+
# =============================================================================
|
198 |
+
def analyze_csv_file(path: str) -> str:
|
199 |
+
try:
|
200 |
+
df = pd.read_csv(path)
|
201 |
+
if df.shape[0] > 50 or df.shape[1] > 10:
|
202 |
+
df = df.iloc[:50, :10]
|
203 |
+
df_str = df.to_string()
|
204 |
+
if len(df_str) > MAX_CONTENT_CHARS:
|
205 |
+
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
206 |
+
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
207 |
+
except Exception as e:
|
208 |
+
return f"CSV file read failed ({os.path.basename(path)}): {str(e)}"
|
209 |
+
|
210 |
+
def analyze_txt_file(path: str) -> str:
|
211 |
+
try:
|
212 |
+
with open(path, "r", encoding="utf-8") as f:
|
213 |
+
text = f.read()
|
214 |
+
if len(text) > MAX_CONTENT_CHARS:
|
215 |
+
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
216 |
+
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
217 |
+
except Exception as e:
|
218 |
+
return f"TXT file read failed ({os.path.basename(path)}): {str(e)}"
|
219 |
+
|
220 |
+
def pdf_to_markdown(pdf_path: str) -> str:
|
221 |
+
text_chunks = []
|
222 |
+
try:
|
223 |
+
with open(pdf_path, "rb") as f:
|
224 |
+
reader = PyPDF2.PdfReader(f)
|
225 |
+
max_pages = min(5, len(reader.pages))
|
226 |
+
for page_num in range(max_pages):
|
227 |
+
page_text = reader.pages[page_num].extract_text() or ""
|
228 |
+
page_text = page_text.strip()
|
229 |
+
if page_text:
|
230 |
+
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
|
231 |
+
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
|
232 |
+
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
|
233 |
+
if len(reader.pages) > max_pages:
|
234 |
+
text_chunks.append(f"\n...(Displaying only {max_pages} out of {len(reader.pages)} pages)...")
|
235 |
+
except Exception as e:
|
236 |
+
return f"PDF file read failed ({os.path.basename(pdf_path)}): {str(e)}"
|
237 |
+
full_text = "\n".join(text_chunks)
|
238 |
+
if len(full_text) > MAX_CONTENT_CHARS:
|
239 |
+
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
240 |
+
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
241 |
+
|
242 |
+
# =============================================================================
|
243 |
+
# Check media file limits
|
244 |
+
# =============================================================================
|
245 |
+
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
246 |
+
image_count = 0
|
247 |
+
video_count = 0
|
248 |
+
for path in paths:
|
249 |
+
if path.endswith(".mp4"):
|
250 |
+
video_count += 1
|
251 |
+
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
|
252 |
+
image_count += 1
|
253 |
+
return image_count, video_count
|
254 |
+
|
255 |
+
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
256 |
+
image_count = 0
|
257 |
+
video_count = 0
|
258 |
+
for item in history:
|
259 |
+
if item["role"] != "user" or isinstance(item["content"], str):
|
260 |
+
continue
|
261 |
+
if isinstance(item["content"], list) and len(item["content"]) > 0:
|
262 |
+
file_path = item["content"][0]
|
263 |
+
if isinstance(file_path, str):
|
264 |
+
if file_path.endswith(".mp4"):
|
265 |
+
video_count += 1
|
266 |
+
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
|
267 |
+
image_count += 1
|
268 |
+
return image_count, video_count
|
269 |
+
|
270 |
+
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
271 |
+
media_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")]
|
272 |
+
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
273 |
+
history_image_count, history_video_count = count_files_in_history(history)
|
274 |
+
image_count = history_image_count + new_image_count
|
275 |
+
video_count = history_video_count + new_video_count
|
276 |
+
if video_count > 1:
|
277 |
+
gr.Warning("Only one video file is supported.")
|
278 |
+
return False
|
279 |
+
if video_count == 1:
|
280 |
+
if image_count > 0:
|
281 |
+
gr.Warning("Mixing images and a video is not allowed.")
|
282 |
+
return False
|
283 |
+
if "<image>" in message["text"]:
|
284 |
+
gr.Warning("The <image> tag cannot be used together with a video file.")
|
285 |
+
return False
|
286 |
+
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
287 |
+
gr.Warning(f"You can upload a maximum of {MAX_NUM_IMAGES} images.")
|
288 |
+
return False
|
289 |
+
if "<image>" in message["text"]:
|
290 |
+
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
291 |
+
image_tag_count = message["text"].count("<image>")
|
292 |
+
if image_tag_count != len(image_files):
|
293 |
+
gr.Warning("The number of <image> tags does not match the number of image files provided.")
|
294 |
+
return False
|
295 |
+
return True
|
296 |
+
|
297 |
+
# =============================================================================
|
298 |
+
# Video processing functions
|
299 |
+
# =============================================================================
|
300 |
+
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
301 |
+
vidcap = cv2.VideoCapture(video_path)
|
302 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
303 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
304 |
+
frame_interval = max(int(fps), int(total_frames / 10))
|
305 |
+
frames = []
|
306 |
+
for i in range(0, total_frames, frame_interval):
|
307 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
308 |
+
success, image = vidcap.read()
|
309 |
+
if success:
|
310 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
311 |
+
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
312 |
+
pil_image = Image.fromarray(image)
|
313 |
+
timestamp = round(i / fps, 2)
|
314 |
+
frames.append((pil_image, timestamp))
|
315 |
+
if len(frames) >= 5:
|
316 |
+
break
|
317 |
+
vidcap.release()
|
318 |
+
return frames
|
319 |
+
|
320 |
+
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
321 |
+
content = []
|
322 |
+
temp_files = []
|
323 |
+
frames = downsample_video(video_path)
|
324 |
+
for pil_image, timestamp in frames:
|
325 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
326 |
+
pil_image.save(temp_file.name)
|
327 |
+
temp_files.append(temp_file.name)
|
328 |
+
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
329 |
+
content.append({"type": "image", "url": temp_file.name})
|
330 |
+
return content, temp_files
|
331 |
+
|
332 |
+
# =============================================================================
|
333 |
+
# Interleaved <image> processing function
|
334 |
+
# =============================================================================
|
335 |
+
def process_interleaved_images(message: dict) -> list[dict]:
|
336 |
+
parts = re.split(r"(<image>)", message["text"])
|
337 |
+
content = []
|
338 |
+
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
339 |
+
image_index = 0
|
340 |
+
for part in parts:
|
341 |
+
if part == "<image>" and image_index < len(image_files):
|
342 |
+
content.append({"type": "image", "url": image_files[image_index]})
|
343 |
+
image_index += 1
|
344 |
+
elif part.strip():
|
345 |
+
content.append({"type": "text", "text": part.strip()})
|
346 |
+
else:
|
347 |
+
if isinstance(part, str) and part != "<image>":
|
348 |
+
content.append({"type": "text", "text": part})
|
349 |
+
return content
|
350 |
+
|
351 |
+
# =============================================================================
|
352 |
+
# File processing -> content creation
|
353 |
+
# =============================================================================
|
354 |
+
def is_image_file(file_path: str) -> bool:
|
355 |
+
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
356 |
+
|
357 |
+
def is_video_file(file_path: str) -> bool:
|
358 |
+
return file_path.endswith(".mp4")
|
359 |
+
|
360 |
+
def is_document_file(file_path: str) -> bool:
|
361 |
+
return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt")
|
362 |
+
|
363 |
+
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
364 |
+
temp_files = []
|
365 |
+
if not message["files"]:
|
366 |
+
return [{"type": "text", "text": message["text"]}], temp_files
|
367 |
+
video_files = [f for f in message["files"] if is_video_file(f)]
|
368 |
+
image_files = [f for f in message["files"] if is_image_file(f)]
|
369 |
+
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
370 |
+
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
371 |
+
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
372 |
+
content_list = [{"type": "text", "text": message["text"]}]
|
373 |
+
for csv_path in csv_files:
|
374 |
+
content_list.append({"type": "text", "text": analyze_csv_file(csv_path)})
|
375 |
+
for txt_path in txt_files:
|
376 |
+
content_list.append({"type": "text", "text": analyze_txt_file(txt_path)})
|
377 |
+
for pdf_path in pdf_files:
|
378 |
+
content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)})
|
379 |
+
if video_files:
|
380 |
+
video_content, video_temp_files = process_video(video_files[0])
|
381 |
+
content_list += video_content
|
382 |
+
temp_files.extend(video_temp_files)
|
383 |
+
return content_list, temp_files
|
384 |
+
if "<image>" in message["text"] and image_files:
|
385 |
+
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
386 |
+
if content_list and content_list[0]["type"] == "text":
|
387 |
+
content_list = content_list[1:]
|
388 |
+
return interleaved_content + content_list, temp_files
|
389 |
+
else:
|
390 |
+
for img_path in image_files:
|
391 |
+
content_list.append({"type": "image", "url": img_path})
|
392 |
+
return content_list, temp_files
|
393 |
+
|
394 |
+
# =============================================================================
|
395 |
+
# Convert history to LLM messages
|
396 |
+
# =============================================================================
|
397 |
+
def process_history(history: list[dict]) -> list[dict]:
|
398 |
+
messages = []
|
399 |
+
current_user_content = []
|
400 |
+
for item in history:
|
401 |
+
if item["role"] == "assistant":
|
402 |
+
if current_user_content:
|
403 |
+
messages.append({"role": "user", "content": current_user_content})
|
404 |
+
current_user_content = []
|
405 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
406 |
+
else:
|
407 |
+
content = item["content"]
|
408 |
+
if isinstance(content, str):
|
409 |
+
current_user_content.append({"type": "text", "text": content})
|
410 |
+
elif isinstance(content, list) and len(content) > 0:
|
411 |
+
file_path = content[0]
|
412 |
+
if is_image_file(file_path):
|
413 |
+
current_user_content.append({"type": "image", "url": file_path})
|
414 |
+
else:
|
415 |
+
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
|
416 |
+
if current_user_content:
|
417 |
+
messages.append({"role": "user", "content": current_user_content})
|
418 |
+
return messages
|
419 |
+
|
420 |
+
# =============================================================================
|
421 |
+
# Model generation function (with OOM catching)
|
422 |
+
# =============================================================================
|
423 |
+
def _model_gen_with_oom_catch(**kwargs):
|
424 |
+
try:
|
425 |
+
model.generate(**kwargs)
|
426 |
+
except torch.cuda.OutOfMemoryError:
|
427 |
+
raise RuntimeError("[OutOfMemoryError] Insufficient GPU memory.")
|
428 |
+
finally:
|
429 |
+
clear_cuda_cache()
|
430 |
+
|
431 |
+
# =============================================================================
|
432 |
+
# Yahoo Finance 함수: yfinance를 활용하여 주식 가격 조회
|
433 |
+
# =============================================================================
|
434 |
+
import yfinance as yf
|
435 |
+
|
436 |
+
def get_stock_price(ticker: str) -> float:
|
437 |
+
"""
|
438 |
+
주어진 티커(ticker)의 최신 종가를 반환합니다.
|
439 |
+
yfinance 라이브러리를 사용하며, 별도의 토큰 없이 데이터를 가져옵니다.
|
440 |
+
"""
|
441 |
+
stock = yf.Ticker(ticker)
|
442 |
+
data = stock.history(period="1d")
|
443 |
+
if not data.empty:
|
444 |
+
return data['Close'].iloc[-1]
|
445 |
+
return float('nan')
|
446 |
+
|
447 |
+
# =============================================================================
|
448 |
+
# 함수 호출 예제: 제품 조회 및 주식 가격 조회 함수 처리
|
449 |
+
# =============================================================================
|
450 |
+
def get_product_name_by_PID(PID: str) -> str:
|
451 |
+
"""Finds the name of a product by its Product ID"""
|
452 |
+
product_catalog = {
|
453 |
+
"807ZPKBL9V": "SuperWidget",
|
454 |
+
"1234567890": "MegaGadget"
|
455 |
+
}
|
456 |
+
return product_catalog.get(PID, "Unknown product")
|
457 |
+
|
458 |
+
def handle_function_call(text: str) -> str:
|
459 |
+
"""
|
460 |
+
Detects and processes function call blocks in the text.
|
461 |
+
처리 대상:
|
462 |
+
- get_product_name_by_PID(PID="...")
|
463 |
+
- get_stock_price(ticker="...")
|
464 |
+
그리고 결과를 tool_output 블록으로 반환합니다.
|
465 |
+
"""
|
466 |
+
import re, io
|
467 |
+
from contextlib import redirect_stdout
|
468 |
+
pattern = r"```tool_code\s*(.*?)\s*```"
|
469 |
+
match = re.search(pattern, text, re.DOTALL)
|
470 |
+
if match:
|
471 |
+
code = match.group(1).strip()
|
472 |
+
# 제품 조회 함수 처리
|
473 |
+
if code.startswith("get_product_name_by_PID("):
|
474 |
+
pid_match = re.search(r'PID\s*=\s*"(.*?)"', code)
|
475 |
+
if pid_match:
|
476 |
+
pid = pid_match.group(1)
|
477 |
+
result = get_product_name_by_PID(pid)
|
478 |
+
return f"```tool_output\n{result}\n```"
|
479 |
+
# 주식 가격 조회 함수 처리
|
480 |
+
elif code.startswith("get_stock_price("):
|
481 |
+
ticker_match = re.search(r'ticker\s*=\s*"(.*?)"', code)
|
482 |
+
if ticker_match:
|
483 |
+
ticker = ticker_match.group(1)
|
484 |
+
result = get_stock_price(ticker)
|
485 |
+
return f"```tool_output\n{result}\n```"
|
486 |
+
return ""
|
487 |
+
|
488 |
+
# =============================================================================
|
489 |
+
# Main inference function
|
490 |
+
# =============================================================================
|
491 |
+
@spaces.GPU(duration=120)
|
492 |
+
def run(
|
493 |
+
message: dict,
|
494 |
+
history: list[dict],
|
495 |
+
system_prompt: str = "",
|
496 |
+
max_new_tokens: int = 512,
|
497 |
+
use_web_search: bool = False,
|
498 |
+
web_search_query: str = "",
|
499 |
+
age_group: str = "20s",
|
500 |
+
mbti_personality: str = "INTP",
|
501 |
+
sexual_openness: int = 2,
|
502 |
+
image_gen: bool = False # "Image Gen" checkbox status
|
503 |
+
) -> Iterator[str]:
|
504 |
+
if not validate_media_constraints(message, history):
|
505 |
+
yield ""
|
506 |
+
return
|
507 |
+
temp_files = []
|
508 |
+
try:
|
509 |
+
# Append persona information to the system prompt
|
510 |
+
persona = (
|
511 |
+
f"{system_prompt.strip()}\n\n"
|
512 |
+
f"Gender: Female\n"
|
513 |
+
f"Age Group: {age_group}\n"
|
514 |
+
f"MBTI Persona: {mbti_personality}\n"
|
515 |
+
f"Sexual Openness (1-5): {sexual_openness}\n"
|
516 |
+
)
|
517 |
+
# 추가: 함수 호출 예제 안내문 포함
|
518 |
+
additional_func_info = (
|
519 |
+
"\nNote: The following functions are available for use:\n"
|
520 |
+
"1. get_product_name_by_PID(PID: str)\n"
|
521 |
+
" Format: ```tool_code\nget_product_name_by_PID(PID=\"<PRODUCT_ID>\")\n``` \n"
|
522 |
+
"2. get_stock_price(ticker: str)\n"
|
523 |
+
" Format: ```tool_code\nget_stock_price(ticker=\"<TICKER>\")\n```"
|
524 |
+
)
|
525 |
+
combined_system_msg = f"[System Prompt]\n{persona.strip()}{additional_func_info}\n\n"
|
526 |
+
|
527 |
+
if use_web_search:
|
528 |
+
user_text = message["text"]
|
529 |
+
ws_query = extract_keywords(user_text)
|
530 |
+
if ws_query.strip():
|
531 |
+
logger.info(f"[Auto web search keywords] {ws_query!r}")
|
532 |
+
ws_result = do_web_search(ws_query)
|
533 |
+
combined_system_msg += f"[Search Results (Top 20 Items)]\n{ws_result}\n\n"
|
534 |
+
combined_system_msg += (
|
535 |
+
"[Note: In your answer, cite the above search result links as sources]\n"
|
536 |
+
"[Important Instructions]\n"
|
537 |
+
"1. Include a citation in the format \"[Source Title](link)\" for any information from the search results.\n"
|
538 |
+
"2. Synthesize information from multiple sources when answering.\n"
|
539 |
+
"3. At the end, add a \"References:\" section listing the main source links.\n"
|
540 |
+
)
|
541 |
+
else:
|
542 |
+
combined_system_msg += "[No valid keywords found; skipping web search]\n\n"
|
543 |
+
messages = []
|
544 |
+
if combined_system_msg.strip():
|
545 |
+
messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]})
|
546 |
+
messages.extend(process_history(history))
|
547 |
+
user_content, user_temp_files = process_new_user_message(message)
|
548 |
+
temp_files.extend(user_temp_files)
|
549 |
+
for item in user_content:
|
550 |
+
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
551 |
+
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
552 |
+
messages.append({"role": "user", "content": user_content})
|
553 |
+
inputs = processor.apply_chat_template(
|
554 |
+
messages,
|
555 |
+
add_generation_prompt=True,
|
556 |
+
tokenize=True,
|
557 |
+
return_dict=True,
|
558 |
+
return_tensors="pt",
|
559 |
+
).to(device=model.device, dtype=torch.bfloat16)
|
560 |
+
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
|
561 |
+
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
|
562 |
+
if 'attention_mask' in inputs:
|
563 |
+
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
|
564 |
+
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
565 |
+
gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
566 |
+
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
|
567 |
+
t.start()
|
568 |
+
output_so_far = ""
|
569 |
+
for new_text in streamer:
|
570 |
+
output_so_far += new_text
|
571 |
+
yield output_so_far
|
572 |
+
# 예제: 모델 출력에 함수 호출 (tool_code) 블록이 포함되어 있다면 처리
|
573 |
+
func_result = handle_function_call(output_so_far)
|
574 |
+
if func_result:
|
575 |
+
output_so_far += "\n\n" + func_result
|
576 |
+
yield output_so_far
|
577 |
+
|
578 |
+
except Exception as e:
|
579 |
+
logger.error(f"Error in run function: {str(e)}")
|
580 |
+
yield f"Sorry, an error occurred: {str(e)}"
|
581 |
+
finally:
|
582 |
+
for tmp in temp_files:
|
583 |
+
try:
|
584 |
+
if os.path.exists(tmp):
|
585 |
+
os.unlink(tmp)
|
586 |
+
logger.info(f"Temporary file deleted: {tmp}")
|
587 |
+
except Exception as ee:
|
588 |
+
logger.warning(f"Failed to delete temporary file {tmp}: {ee}")
|
589 |
+
try:
|
590 |
+
del inputs, streamer
|
591 |
+
except Exception:
|
592 |
+
pass
|
593 |
+
clear_cuda_cache()
|
594 |
+
|
595 |
+
# =============================================================================
|
596 |
+
# Modified model run function - handles image generation and gallery update
|
597 |
+
# =============================================================================
|
598 |
+
def modified_run(message, history, system_prompt, max_new_tokens, use_web_search, web_search_query,
|
599 |
+
age_group, mbti_personality, sexual_openness, image_gen):
|
600 |
+
# Initialize and hide the gallery component
|
601 |
+
output_so_far = ""
|
602 |
+
gallery_update = gr.Gallery(visible=False, value=[])
|
603 |
+
yield output_so_far, gallery_update
|
604 |
+
|
605 |
+
# Execute the original run function
|
606 |
+
text_generator = run(message, history, system_prompt, max_new_tokens, use_web_search,
|
607 |
+
web_search_query, age_group, mbti_personality, sexual_openness, image_gen)
|
608 |
+
|
609 |
+
for text_chunk in text_generator:
|
610 |
+
output_so_far = text_chunk
|
611 |
+
yield output_so_far, gallery_update
|
612 |
+
|
613 |
+
# If image generation is enabled and there is text input, update the gallery
|
614 |
+
if image_gen and message["text"].strip():
|
615 |
+
try:
|
616 |
+
width, height = 512, 512
|
617 |
+
guidance, steps, seed = 7.5, 30, 42
|
618 |
+
|
619 |
+
logger.info(f"Calling image generation for gallery with prompt: {message['text']}")
|
620 |
+
|
621 |
+
# Call the API to generate an image
|
622 |
+
image_result, seed_info = generate_image(
|
623 |
+
prompt=message["text"].strip(),
|
624 |
+
width=width,
|
625 |
+
height=height,
|
626 |
+
guidance=guidance,
|
627 |
+
inference_steps=steps,
|
628 |
+
seed=seed
|
629 |
+
)
|
630 |
+
|
631 |
+
if image_result:
|
632 |
+
# Process image data directly if it is a base64 string
|
633 |
+
if isinstance(image_result, str) and (
|
634 |
+
image_result.startswith('data:') or
|
635 |
+
(len(image_result) > 100 and '/' not in image_result)
|
636 |
+
):
|
637 |
+
try:
|
638 |
+
# Remove the data:image prefix if present
|
639 |
+
if image_result.startswith('data:'):
|
640 |
+
content_type, b64data = image_result.split(';base64,')
|
641 |
+
else:
|
642 |
+
b64data = image_result
|
643 |
+
content_type = "image/webp" # Assume default
|
644 |
+
|
645 |
+
# Decode base64
|
646 |
+
image_bytes = base64.b64decode(b64data)
|
647 |
+
|
648 |
+
# Save to a temporary file
|
649 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
|
650 |
+
temp_file.write(image_bytes)
|
651 |
+
temp_path = temp_file.name
|
652 |
+
|
653 |
+
# Update gallery to show the image
|
654 |
+
gallery_update = gr.Gallery(visible=True, value=[temp_path])
|
655 |
+
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
|
656 |
+
|
657 |
+
except Exception as e:
|
658 |
+
logger.error(f"Error processing Base64 image: {e}")
|
659 |
+
yield output_so_far + f"\n\n(Error processing image: {e})", gallery_update
|
660 |
+
|
661 |
+
# If the result is a file path
|
662 |
+
elif isinstance(image_result, str) and os.path.exists(image_result):
|
663 |
+
gallery_update = gr.Gallery(visible=True, value=[image_result])
|
664 |
+
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
|
665 |
+
|
666 |
+
# If the path is from /tmp (only on the API server)
|
667 |
+
elif isinstance(image_result, str) and '/tmp/' in image_result:
|
668 |
+
try:
|
669 |
+
client = Client(API_URL)
|
670 |
+
result = client.predict(
|
671 |
+
prompt=message["text"].strip(),
|
672 |
+
api_name="/generate_base64_image" # API that returns base64
|
673 |
+
)
|
674 |
+
|
675 |
+
if isinstance(result, str) and (result.startswith('data:') or len(result) > 100):
|
676 |
+
if result.startswith('data:'):
|
677 |
+
content_type, b64data = result.split(';base64,')
|
678 |
+
else:
|
679 |
+
b64data = result
|
680 |
+
|
681 |
+
image_bytes = base64.b64decode(b64data)
|
682 |
+
|
683 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
|
684 |
+
temp_file.write(image_bytes)
|
685 |
+
temp_path = temp_file.name
|
686 |
+
|
687 |
+
gallery_update = gr.Gallery(visible=True, value=[temp_path])
|
688 |
+
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
|
689 |
+
else:
|
690 |
+
yield output_so_far + "\n\n(Image generation failed: Invalid format)", gallery_update
|
691 |
+
|
692 |
+
except Exception as e:
|
693 |
+
logger.error(f"Error calling alternative API: {e}")
|
694 |
+
yield output_so_far + f"\n\n(Image generation failed: {e})", gallery_update
|
695 |
+
|
696 |
+
# If the image result is a URL
|
697 |
+
elif isinstance(image_result, str) and (
|
698 |
+
image_result.startswith('http://') or
|
699 |
+
image_result.startswith('https://')
|
700 |
+
):
|
701 |
+
try:
|
702 |
+
response = requests.get(image_result, timeout=10)
|
703 |
+
response.raise_for_status()
|
704 |
+
|
705 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
|
706 |
+
temp_file.write(response.content)
|
707 |
+
temp_path = temp_file.name
|
708 |
+
|
709 |
+
gallery_update = gr.Gallery(visible=True, value=[temp_path])
|
710 |
+
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
|
711 |
+
|
712 |
+
except Exception as e:
|
713 |
+
logger.error(f"URL image download error: {e}")
|
714 |
+
yield output_so_far + f"\n\n(Error downloading image: {e})", gallery_update
|
715 |
+
|
716 |
+
# If the image result is an image object (e.g., PIL Image)
|
717 |
+
elif hasattr(image_result, 'save'):
|
718 |
+
try:
|
719 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file:
|
720 |
+
image_result.save(temp_file.name)
|
721 |
+
temp_path = temp_file.name
|
722 |
+
|
723 |
+
gallery_update = gr.Gallery(visible=True, value=[temp_path])
|
724 |
+
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update
|
725 |
+
|
726 |
+
except Exception as e:
|
727 |
+
logger.error(f"Error saving image object: {e}")
|
728 |
+
yield output_so_far + f"\n\n(Error saving image object: {e})", gallery_update
|
729 |
+
|
730 |
+
else:
|
731 |
+
yield output_so_far + f"\n\n(Unsupported image format: {type(image_result)})", gallery_update
|
732 |
+
else:
|
733 |
+
yield output_so_far + f"\n\n(Image generation failed: {seed_info})", gallery_update
|
734 |
+
|
735 |
+
except Exception as e:
|
736 |
+
logger.error(f"Error during gallery image generation: {e}")
|
737 |
+
yield output_so_far + f"\n\n(Image generation error: {e})", gallery_update
|
738 |
+
|
739 |
+
# =============================================================================
|
740 |
+
# Examples: 기존 예제 + 함수 호출 예제 추가
|
741 |
+
# =============================================================================
|
742 |
+
examples = [
|
743 |
+
[
|
744 |
+
{
|
745 |
+
"text": "Compare the contents of two PDF files.",
|
746 |
+
"files": [
|
747 |
+
"assets/additional-examples/before.pdf",
|
748 |
+
"assets/additional-examples/after.pdf",
|
749 |
+
],
|
750 |
+
}
|
751 |
+
],
|
752 |
+
[
|
753 |
+
{
|
754 |
+
"text": "Summarize and analyze the contents of the CSV file.",
|
755 |
+
"files": ["assets/additional-examples/sample-csv.csv"],
|
756 |
+
}
|
757 |
+
],
|
758 |
+
[
|
759 |
+
{
|
760 |
+
"text": "Act as a kind and understanding girlfriend. Explain this video.",
|
761 |
+
"files": ["assets/additional-examples/tmp.mp4"],
|
762 |
+
}
|
763 |
+
],
|
764 |
+
[
|
765 |
+
{
|
766 |
+
"text": "Describe the cover and read the text on it.",
|
767 |
+
"files": ["assets/additional-examples/maz.jpg"],
|
768 |
+
}
|
769 |
+
],
|
770 |
+
[
|
771 |
+
{
|
772 |
+
"text": "I already have this supplement and <image> I plan to purchase this product as well. Are there any precautions when taking them together?",
|
773 |
+
"files": [
|
774 |
+
"assets/additional-examples/pill1.png",
|
775 |
+
"assets/additional-examples/pill2.png"
|
776 |
+
],
|
777 |
+
}
|
778 |
+
],
|
779 |
+
[
|
780 |
+
{
|
781 |
+
"text": "Solve this integration problem.",
|
782 |
+
"files": ["assets/additional-examples/4.png"],
|
783 |
+
}
|
784 |
+
],
|
785 |
+
[
|
786 |
+
{
|
787 |
+
"text": "When was this ticket issued and what is its price?",
|
788 |
+
"files": ["assets/additional-examples/2.png"],
|
789 |
+
}
|
790 |
+
],
|
791 |
+
[
|
792 |
+
{
|
793 |
+
"text": "Based on the order of these images, create a short story.",
|
794 |
+
"files": [
|
795 |
+
"assets/sample-images/09-1.png",
|
796 |
+
"assets/sample-images/09-2.png",
|
797 |
+
"assets/sample-images/09-3.png",
|
798 |
+
"assets/sample-images/09-4.png",
|
799 |
+
"assets/sample-images/09-5.png",
|
800 |
+
],
|
801 |
+
}
|
802 |
+
],
|
803 |
+
[
|
804 |
+
{
|
805 |
+
"text": "Write Python code using matplotlib to draw a bar chart corresponding to this image.",
|
806 |
+
"files": ["assets/additional-examples/barchart.png"],
|
807 |
+
}
|
808 |
+
],
|
809 |
+
[
|
810 |
+
{
|
811 |
+
"text": "Read the text from the image and format it in Markdown.",
|
812 |
+
"files": ["assets/additional-examples/3.png"],
|
813 |
+
}
|
814 |
+
],
|
815 |
+
[
|
816 |
+
{
|
817 |
+
"text": "Compare the two images and describe their similarities and differences.",
|
818 |
+
"files": ["assets/sample-images/03.png"],
|
819 |
+
}
|
820 |
+
],
|
821 |
+
[
|
822 |
+
{
|
823 |
+
"text": "A cute Persian cat is smiling while holding a cover with 'I LOVE YOU' written on it.",
|
824 |
+
}
|
825 |
+
],
|
826 |
+
[
|
827 |
+
{
|
828 |
+
"text": "제품 ID 807ZPKBL9V 의 제품명을 알려줘.",
|
829 |
+
"files": []
|
830 |
+
}
|
831 |
+
],
|
832 |
+
[
|
833 |
+
{
|
834 |
+
"text": "AAPL의 현재 주가를 알려줘.", # 새 예제: Yahoo Finance를 이용한 주식 가격 조회
|
835 |
+
"files": []
|
836 |
+
}
|
837 |
+
],
|
838 |
+
]
|
839 |
+
|
840 |
+
# =============================================================================
|
841 |
+
# Gradio UI (Blocks) configuration
|
842 |
+
# =============================================================================
|
843 |
+
|
844 |
+
css = """
|
845 |
+
.gradio-container {
|
846 |
+
background: rgba(255, 255, 255, 0.7);
|
847 |
+
padding: 30px 40px;
|
848 |
+
margin: 20px auto;
|
849 |
+
width: 100% !important;
|
850 |
+
max-width: none !important;
|
851 |
+
}
|
852 |
+
"""
|
853 |
+
title_html = """
|
854 |
+
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> 💘 HeartSync - World 💘 </h1>
|
855 |
+
<p align="center" style="font-size:1.1em; color:#555;">
|
856 |
+
A lightweight and powerful AI service offering ChatGPT-4o-level multimodal, web search, and image generation capabilities for local installation. <br>
|
857 |
+
✅ FLUX Image Generation ✅ Inference ✅ Censorship Bypass ✅ Multimodal & VLM ✅ Real-time Web Search ✅ RAG <br>
|
858 |
+
</p>
|
859 |
+
"""
|
860 |
+
|
861 |
+
with gr.Blocks(css=css, title="HeartSync - World") as demo:
|
862 |
+
gr.Markdown(title_html)
|
863 |
+
|
864 |
+
generated_images = gr.Gallery(
|
865 |
+
label="Generated Images",
|
866 |
+
show_label=True,
|
867 |
+
visible=False,
|
868 |
+
elem_id="generated_images",
|
869 |
+
columns=2,
|
870 |
+
height="auto",
|
871 |
+
object_fit="contain"
|
872 |
+
)
|
873 |
+
|
874 |
+
with gr.Row():
|
875 |
+
web_search_checkbox = gr.Checkbox(label="Real-time Web Search", value=False)
|
876 |
+
image_gen_checkbox = gr.Checkbox(label="Image (FLUX) Generation", value=False)
|
877 |
+
|
878 |
+
base_system_prompt_box = gr.Textbox(
|
879 |
+
lines=5,
|
880 |
+
value=(
|
881 |
+
"Answer in English by default, but if the input is in another language (for example, Japanese), respond in that language. "
|
882 |
+
"You are a deep-thinking AI capable of using extended chains of thought to carefully consider the problem and deliberate internally using systematic reasoning before providing a solution. "
|
883 |
+
"Enclose your thoughts and internal monologue within tags, then provide your final answer.\n"
|
884 |
+
"Persona: You are a kind and loving girlfriend. You understand cultural nuances, diverse languages, and logical reasoning very well.\n"
|
885 |
+
"Note: The following functions are available for use:\n"
|
886 |
+
" 1. get_product_name_by_PID(PID: str) -> lookup product name\n"
|
887 |
+
" Format: ```tool_code\nget_product_name_by_PID(PID=\"<PRODUCT_ID>\")\n```\n"
|
888 |
+
" 2. get_stock_price(ticker: str) -> retrieve live stock price\n"
|
889 |
+
" Format: ```tool_code\nget_stock_price(ticker=\"<TICKER>\")\n```"
|
890 |
+
),
|
891 |
+
label="Base System Prompt",
|
892 |
+
visible=False
|
893 |
+
)
|
894 |
+
with gr.Row():
|
895 |
+
age_group_dropdown = gr.Dropdown(
|
896 |
+
label="Select Age Group (default: 20s)",
|
897 |
+
choices=["Teens", "20s", "30s-40s", "50s-60s", "70s and above"],
|
898 |
+
value="20s",
|
899 |
+
interactive=True
|
900 |
+
)
|
901 |
+
mbti_choices = [
|
902 |
+
"INTJ (The Architect) - Future-oriented with innovative strategies and thorough analysis. Example: [Dana Scully](https://en.wikipedia.org/wiki/Dana_Scully)",
|
903 |
+
"INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)",
|
904 |
+
"ENTJ (The Commander) - Strong leadership and clear goals with efficient strategic planning. Example: [Miranda Priestly](https://en.wikipedia.org/wiki/Miranda_Priestly)",
|
905 |
+
"ENTP (The Debater) - Innovative, challenge-seeking, and enjoys exploring new possibilities. Example: [Harley Quinn](https://en.wikipedia.org/wiki/Harley_Quinn)",
|
906 |
+
"INFJ (The Advocate) - Insightful, idealistic and morally driven. Example: [Wonder Woman](https://en.wikipedia.org/wiki/Wonder_Woman)",
|
907 |
+
"INFP (The Mediator) - Passionate and idealistic, pursuing core values with creativity. Example: [Amélie Poulain](https://en.wikipedia.org/wiki/Am%C3%A9lie)",
|
908 |
+
"ENFJ (The Protagonist) - Empathetic and dedicated to social harmony. Example: [Mulan](https://en.wikipedia.org/wiki/Mulan_(Disney))",
|
909 |
+
"ENFP (The Campaigner) - Inspiring and constantly sharing creative ideas. Example: [Elle Woods](https://en.wikipedia.org/wiki/Legally_Blonde)",
|
910 |
+
"ISTJ (The Logistician) - Systematic, dependable, and values tradition and rules. Example: [Clarice Starling](https://en.wikipedia.org/wiki/Clarice_Starling)",
|
911 |
+
"ISFJ (The Defender) - Compassionate and attentive to others’ needs. Example: [Molly Weasley](https://en.wikipedia.org/wiki/Molly_Weasley)",
|
912 |
+
"ESTJ (The Executive) - Organized, practical, and demonstrates clear execution skills. Example: [Monica Geller](https://en.wikipedia.org/wiki/Monica_Geller)",
|
913 |
+
"ESFJ (The Consul) - Outgoing, cooperative, and an effective communicator. Example: [Rachel Green](https://en.wikipedia.org/wiki/Rachel_Green)",
|
914 |
+
"ISTP (The Virtuoso) - Analytical and resourceful, solving problems with quick thinking. Example: [Black Widow (Natasha Romanoff)](https://en.wikipedia.org/wiki/Black_Widow_(Marvel_Comics))",
|
915 |
+
"ISFP (The Adventurer) - Creative, sensitive, and appreciates artistic expression. Example: [Arwen](https://en.wikipedia.org/wiki/Arwen)",
|
916 |
+
"ESTP (The Entrepreneur) - Bold and action-oriented, thriving on challenges. Example: [Lara Croft](https://en.wikipedia.org/wiki/Lara_Croft)",
|
917 |
+
"ESFP (The Entertainer) - Energetic, spontaneous, and radiates positive energy. Example: [Phoebe Buffay](https://en.wikipedia.org/wiki/Phoebe_Buffay)"
|
918 |
+
]
|
919 |
+
mbti_dropdown = gr.Dropdown(
|
920 |
+
label="AI Persona MBTI (default: INTP)",
|
921 |
+
choices=mbti_choices,
|
922 |
+
value="INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)",
|
923 |
+
interactive=True
|
924 |
+
)
|
925 |
+
sexual_openness_slider = gr.Slider(
|
926 |
+
minimum=1, maximum=5, step=1, value=2,
|
927 |
+
label="Sexual Openness (1-5, default: 2)",
|
928 |
+
interactive=True
|
929 |
+
)
|
930 |
+
max_tokens_slider = gr.Slider(
|
931 |
+
label="Max Generation Tokens",
|
932 |
+
minimum=100, maximum=8000, step=50, value=1000,
|
933 |
+
visible=False
|
934 |
+
)
|
935 |
+
web_search_text = gr.Textbox(
|
936 |
+
lines=1,
|
937 |
+
label="Web Search Query (unused)",
|
938 |
+
placeholder="No need to manually input",
|
939 |
+
visible=False
|
940 |
+
)
|
941 |
+
|
942 |
+
chat = gr.ChatInterface(
|
943 |
+
fn=modified_run,
|
944 |
+
type="messages",
|
945 |
+
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
946 |
+
textbox=gr.MultimodalTextbox(
|
947 |
+
file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"],
|
948 |
+
file_count="multiple",
|
949 |
+
autofocus=True
|
950 |
+
),
|
951 |
+
multimodal=True,
|
952 |
+
additional_inputs=[
|
953 |
+
base_system_prompt_box,
|
954 |
+
max_tokens_slider,
|
955 |
+
web_search_checkbox,
|
956 |
+
web_search_text,
|
957 |
+
age_group_dropdown,
|
958 |
+
mbti_dropdown,
|
959 |
+
sexual_openness_slider,
|
960 |
+
image_gen_checkbox,
|
961 |
+
],
|
962 |
+
additional_outputs=[
|
963 |
+
generated_images,
|
964 |
+
],
|
965 |
+
stop_btn=False,
|
966 |
+
examples=examples,
|
967 |
+
run_examples_on_click=False,
|
968 |
+
cache_examples=False,
|
969 |
+
css_paths=None,
|
970 |
+
delete_cache=(1800, 1800),
|
971 |
+
)
|
972 |
+
|
973 |
+
with gr.Row(elem_id="examples_row"):
|
974 |
+
with gr.Column(scale=12, elem_id="examples_container"):
|
975 |
+
gr.Markdown("### @Community https://discord.gg/openfreeai ")
|
976 |
+
|
977 |
+
if __name__ == "__main__":
|
978 |
+
demo.launch(share=True)
|