Update
Browse files
app.py
CHANGED
|
@@ -18,10 +18,12 @@ if not torch.cuda.is_available():
|
|
| 18 |
|
| 19 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
|
|
|
| 21 |
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b"
|
|
|
|
| 22 |
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl"
|
| 23 |
MODEL_ID = os.getenv("MODEL_ID", MODEL_ID_FLAN_T5_XXL)
|
| 24 |
-
assert MODEL_ID in [MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL]
|
| 25 |
|
| 26 |
if torch.cuda.is_available():
|
| 27 |
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
|
@@ -31,10 +33,14 @@ if torch.cuda.is_available():
|
|
| 31 |
@spaces.GPU
|
| 32 |
def generate_caption(
|
| 33 |
image: PIL.Image.Image,
|
| 34 |
-
decoding_method: str,
|
| 35 |
-
temperature: float,
|
| 36 |
-
length_penalty: float,
|
| 37 |
-
repetition_penalty: float,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
) -> str:
|
| 39 |
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 40 |
generated_ids = model.generate(
|
|
@@ -43,10 +49,10 @@ def generate_caption(
|
|
| 43 |
temperature=temperature,
|
| 44 |
length_penalty=length_penalty,
|
| 45 |
repetition_penalty=repetition_penalty,
|
| 46 |
-
max_length=
|
| 47 |
-
min_length=
|
| 48 |
-
num_beams=
|
| 49 |
-
top_p=
|
| 50 |
)
|
| 51 |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 52 |
return result
|
|
@@ -55,23 +61,27 @@ def generate_caption(
|
|
| 55 |
@spaces.GPU
|
| 56 |
def answer_question(
|
| 57 |
image: PIL.Image.Image,
|
| 58 |
-
|
| 59 |
-
decoding_method: str,
|
| 60 |
-
temperature: float,
|
| 61 |
-
length_penalty: float,
|
| 62 |
-
repetition_penalty: float,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
) -> str:
|
| 64 |
-
inputs = processor(images=image, text=
|
| 65 |
generated_ids = model.generate(
|
| 66 |
**inputs,
|
| 67 |
do_sample=decoding_method == "Nucleus sampling",
|
| 68 |
temperature=temperature,
|
| 69 |
length_penalty=length_penalty,
|
| 70 |
repetition_penalty=repetition_penalty,
|
| 71 |
-
max_length=
|
| 72 |
-
min_length=
|
| 73 |
-
num_beams=
|
| 74 |
-
top_p=
|
| 75 |
)
|
| 76 |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 77 |
return result
|
|
@@ -86,10 +96,14 @@ def postprocess_output(output: str) -> str:
|
|
| 86 |
def chat(
|
| 87 |
image: PIL.Image.Image,
|
| 88 |
text: str,
|
| 89 |
-
decoding_method: str,
|
| 90 |
-
temperature: float,
|
| 91 |
-
length_penalty: float,
|
| 92 |
-
repetition_penalty: float,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
history_orig: list[str] = [],
|
| 94 |
history_qa: list[str] = [],
|
| 95 |
) -> tuple[list[tuple[str, str]], list[str], list[str]]:
|
|
@@ -99,12 +113,16 @@ def chat(
|
|
| 99 |
prompt = " ".join(history_qa)
|
| 100 |
|
| 101 |
output = answer_question(
|
| 102 |
-
image,
|
| 103 |
-
prompt,
|
| 104 |
-
decoding_method,
|
| 105 |
-
temperature,
|
| 106 |
-
length_penalty,
|
| 107 |
-
repetition_penalty,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
)
|
| 109 |
output = postprocess_output(output)
|
| 110 |
history_orig.append(output)
|
|
@@ -160,7 +178,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 160 |
clear_chat_button = gr.Button("Clear")
|
| 161 |
chat_button = gr.Button("Submit", variant="primary")
|
| 162 |
with gr.Accordion(label="Advanced settings", open=False):
|
| 163 |
-
|
| 164 |
label="Text Decoding Method",
|
| 165 |
choices=["Beam search", "Nucleus sampling"],
|
| 166 |
value="Nucleus sampling",
|
|
@@ -170,24 +188,53 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 170 |
info="Used with nucleus sampling.",
|
| 171 |
minimum=0.5,
|
| 172 |
maximum=1.0,
|
| 173 |
-
value=1.0,
|
| 174 |
step=0.1,
|
|
|
|
| 175 |
)
|
| 176 |
length_penalty = gr.Slider(
|
| 177 |
label="Length Penalty",
|
| 178 |
info="Set to larger for longer sequence, used with beam search.",
|
| 179 |
minimum=-1.0,
|
| 180 |
maximum=2.0,
|
| 181 |
-
value=1.0,
|
| 182 |
step=0.2,
|
|
|
|
| 183 |
)
|
| 184 |
-
|
| 185 |
-
label="
|
| 186 |
info="Larger value prevents repetition.",
|
| 187 |
minimum=1.0,
|
| 188 |
maximum=5.0,
|
| 189 |
-
value=1.5,
|
| 190 |
step=0.5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
)
|
| 192 |
|
| 193 |
gr.Examples(
|
|
@@ -199,10 +246,14 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 199 |
fn=generate_caption,
|
| 200 |
inputs=[
|
| 201 |
image,
|
| 202 |
-
|
| 203 |
temperature,
|
| 204 |
length_penalty,
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
],
|
| 207 |
outputs=caption_output,
|
| 208 |
api_name="caption",
|
|
@@ -211,10 +262,14 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 211 |
chat_inputs = [
|
| 212 |
image,
|
| 213 |
vqa_input,
|
| 214 |
-
|
| 215 |
temperature,
|
| 216 |
length_penalty,
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
history_orig,
|
| 219 |
history_qa,
|
| 220 |
]
|
|
|
|
| 18 |
|
| 19 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
+
MODEL_ID_OPT_2_7B = "Salesforce/blip2-opt-2.7b"
|
| 22 |
MODEL_ID_OPT_6_7B = "Salesforce/blip2-opt-6.7b"
|
| 23 |
+
MODEL_ID_FLAN_T5_XL = "Salesforce/blip2-flan-t5-xl"
|
| 24 |
MODEL_ID_FLAN_T5_XXL = "Salesforce/blip2-flan-t5-xxl"
|
| 25 |
MODEL_ID = os.getenv("MODEL_ID", MODEL_ID_FLAN_T5_XXL)
|
| 26 |
+
assert MODEL_ID in [MODEL_ID_OPT_2_7B, MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XL, MODEL_ID_FLAN_T5_XXL]
|
| 27 |
|
| 28 |
if torch.cuda.is_available():
|
| 29 |
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
|
|
|
| 33 |
@spaces.GPU
|
| 34 |
def generate_caption(
|
| 35 |
image: PIL.Image.Image,
|
| 36 |
+
decoding_method: str = "Nucleus sampling",
|
| 37 |
+
temperature: float = 1.0,
|
| 38 |
+
length_penalty: float = 1.0,
|
| 39 |
+
repetition_penalty: float = 1.5,
|
| 40 |
+
max_length: int = 50,
|
| 41 |
+
min_length: int = 1,
|
| 42 |
+
num_beams: int = 5,
|
| 43 |
+
top_p: float = 0.9,
|
| 44 |
) -> str:
|
| 45 |
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
| 46 |
generated_ids = model.generate(
|
|
|
|
| 49 |
temperature=temperature,
|
| 50 |
length_penalty=length_penalty,
|
| 51 |
repetition_penalty=repetition_penalty,
|
| 52 |
+
max_length=max_length,
|
| 53 |
+
min_length=min_length,
|
| 54 |
+
num_beams=num_beams,
|
| 55 |
+
top_p=top_p,
|
| 56 |
)
|
| 57 |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 58 |
return result
|
|
|
|
| 61 |
@spaces.GPU
|
| 62 |
def answer_question(
|
| 63 |
image: PIL.Image.Image,
|
| 64 |
+
prompt: str,
|
| 65 |
+
decoding_method: str = "Nucleus sampling",
|
| 66 |
+
temperature: float = 1.0,
|
| 67 |
+
length_penalty: float = 1.0,
|
| 68 |
+
repetition_penalty: float = 1.5,
|
| 69 |
+
max_length: int = 50,
|
| 70 |
+
min_length: int = 1,
|
| 71 |
+
num_beams: int = 5,
|
| 72 |
+
top_p: float = 0.9,
|
| 73 |
) -> str:
|
| 74 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
| 75 |
generated_ids = model.generate(
|
| 76 |
**inputs,
|
| 77 |
do_sample=decoding_method == "Nucleus sampling",
|
| 78 |
temperature=temperature,
|
| 79 |
length_penalty=length_penalty,
|
| 80 |
repetition_penalty=repetition_penalty,
|
| 81 |
+
max_length=max_length,
|
| 82 |
+
min_length=min_length,
|
| 83 |
+
num_beams=num_beams,
|
| 84 |
+
top_p=top_p,
|
| 85 |
)
|
| 86 |
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 87 |
return result
|
|
|
|
| 96 |
def chat(
|
| 97 |
image: PIL.Image.Image,
|
| 98 |
text: str,
|
| 99 |
+
decoding_method: str = "Nucleus sampling",
|
| 100 |
+
temperature: float = 1.0,
|
| 101 |
+
length_penalty: float = 1.0,
|
| 102 |
+
repetition_penalty: float = 1.5,
|
| 103 |
+
max_length: int = 50,
|
| 104 |
+
min_length: int = 1,
|
| 105 |
+
num_beams: int = 5,
|
| 106 |
+
top_p: float = 0.9,
|
| 107 |
history_orig: list[str] = [],
|
| 108 |
history_qa: list[str] = [],
|
| 109 |
) -> tuple[list[tuple[str, str]], list[str], list[str]]:
|
|
|
|
| 113 |
prompt = " ".join(history_qa)
|
| 114 |
|
| 115 |
output = answer_question(
|
| 116 |
+
image=image,
|
| 117 |
+
prompt=prompt,
|
| 118 |
+
decoding_method=decoding_method,
|
| 119 |
+
temperature=temperature,
|
| 120 |
+
length_penalty=length_penalty,
|
| 121 |
+
repetition_penalty=repetition_penalty,
|
| 122 |
+
max_length=max_length,
|
| 123 |
+
min_length=min_length,
|
| 124 |
+
num_beams=num_beams,
|
| 125 |
+
top_p=top_p,
|
| 126 |
)
|
| 127 |
output = postprocess_output(output)
|
| 128 |
history_orig.append(output)
|
|
|
|
| 178 |
clear_chat_button = gr.Button("Clear")
|
| 179 |
chat_button = gr.Button("Submit", variant="primary")
|
| 180 |
with gr.Accordion(label="Advanced settings", open=False):
|
| 181 |
+
text_decoding_method = gr.Radio(
|
| 182 |
label="Text Decoding Method",
|
| 183 |
choices=["Beam search", "Nucleus sampling"],
|
| 184 |
value="Nucleus sampling",
|
|
|
|
| 188 |
info="Used with nucleus sampling.",
|
| 189 |
minimum=0.5,
|
| 190 |
maximum=1.0,
|
|
|
|
| 191 |
step=0.1,
|
| 192 |
+
value=1.0,
|
| 193 |
)
|
| 194 |
length_penalty = gr.Slider(
|
| 195 |
label="Length Penalty",
|
| 196 |
info="Set to larger for longer sequence, used with beam search.",
|
| 197 |
minimum=-1.0,
|
| 198 |
maximum=2.0,
|
|
|
|
| 199 |
step=0.2,
|
| 200 |
+
value=1.0,
|
| 201 |
)
|
| 202 |
+
repetition_penalty = gr.Slider(
|
| 203 |
+
label="Repetition Penalty",
|
| 204 |
info="Larger value prevents repetition.",
|
| 205 |
minimum=1.0,
|
| 206 |
maximum=5.0,
|
|
|
|
| 207 |
step=0.5,
|
| 208 |
+
value=1.5,
|
| 209 |
+
)
|
| 210 |
+
max_length = gr.Slider(
|
| 211 |
+
label="Max Length",
|
| 212 |
+
minimum=1,
|
| 213 |
+
maximum=512,
|
| 214 |
+
step=1,
|
| 215 |
+
value=50,
|
| 216 |
+
)
|
| 217 |
+
min_length = gr.Slider(
|
| 218 |
+
label="Minimum Length",
|
| 219 |
+
minimum=1,
|
| 220 |
+
maximum=100,
|
| 221 |
+
step=1,
|
| 222 |
+
value=1,
|
| 223 |
+
)
|
| 224 |
+
num_beams = gr.Slider(
|
| 225 |
+
label="Number of Beams",
|
| 226 |
+
minimum=1,
|
| 227 |
+
maximum=10,
|
| 228 |
+
step=1,
|
| 229 |
+
value=5,
|
| 230 |
+
)
|
| 231 |
+
top_p = gr.Slider(
|
| 232 |
+
label="Top P",
|
| 233 |
+
info="Used with nucleus sampling.",
|
| 234 |
+
minimum=0.5,
|
| 235 |
+
maximum=1.0,
|
| 236 |
+
step=0.1,
|
| 237 |
+
value=0.9,
|
| 238 |
)
|
| 239 |
|
| 240 |
gr.Examples(
|
|
|
|
| 246 |
fn=generate_caption,
|
| 247 |
inputs=[
|
| 248 |
image,
|
| 249 |
+
text_decoding_method,
|
| 250 |
temperature,
|
| 251 |
length_penalty,
|
| 252 |
+
repetition_penalty,
|
| 253 |
+
max_length,
|
| 254 |
+
min_length,
|
| 255 |
+
num_beams,
|
| 256 |
+
top_p,
|
| 257 |
],
|
| 258 |
outputs=caption_output,
|
| 259 |
api_name="caption",
|
|
|
|
| 262 |
chat_inputs = [
|
| 263 |
image,
|
| 264 |
vqa_input,
|
| 265 |
+
text_decoding_method,
|
| 266 |
temperature,
|
| 267 |
length_penalty,
|
| 268 |
+
repetition_penalty,
|
| 269 |
+
max_length,
|
| 270 |
+
min_length,
|
| 271 |
+
num_beams,
|
| 272 |
+
top_p,
|
| 273 |
history_orig,
|
| 274 |
history_qa,
|
| 275 |
]
|