Spaces:
Running
Running
import gradio as gr | |
import replicate | |
import os | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
import time | |
import tempfile | |
import base64 | |
# Set up Replicate API key from environment variable | |
os.environ['REPLICATE_API_TOKEN'] = os.getenv('REPLICATE_API_TOKEN') | |
def process_images(prompt, image1, image2=None): | |
""" | |
Process uploaded images with Replicate API | |
""" | |
if not image1: | |
return None, "Please upload at least one image" | |
# Check if API token is set | |
if not os.getenv('REPLICATE_API_TOKEN'): | |
return None, "β οΈ Please set REPLICATE_API_TOKEN environment variable" | |
try: | |
import tempfile | |
import base64 | |
# Save images temporarily and create data URIs | |
image_inputs = [] | |
# Process first image | |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp1: | |
image1.save(tmp1.name) | |
with open(tmp1.name, 'rb') as f: | |
img_data = base64.b64encode(f.read()).decode() | |
# For some models, you might need data URI format | |
image_inputs.append(f"data:image/png;base64,{img_data}") | |
os.unlink(tmp1.name) # Clean up temp file | |
# Process second image if provided | |
if image2: | |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp2: | |
image2.save(tmp2.name) | |
with open(tmp2.name, 'rb') as f: | |
img_data = base64.b64encode(f.read()).decode() | |
image_inputs.append(f"data:image/png;base64,{img_data}") | |
os.unlink(tmp2.name) | |
status_message = "π¨ Processing your images..." | |
# Example using a real Replicate model (stable-diffusion) | |
# You should replace this with your actual model | |
try: | |
# For image-to-image models, use something like: | |
output = replicate.run( | |
"stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", | |
input={ | |
"prompt": prompt, | |
"image": image_inputs[0] if image_inputs else None, | |
"num_outputs": 1, | |
"guidance_scale": 7.5, | |
"num_inference_steps": 50 | |
} | |
) | |
except: | |
# Fallback to a simpler text-to-image if image input fails | |
output = replicate.run( | |
"stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", | |
input={ | |
"prompt": prompt, | |
"num_outputs": 1 | |
} | |
) | |
# Handle different output formats | |
output_url = None | |
if isinstance(output, list) and len(output) > 0: | |
# If output is a list, take the first item | |
output_url = output[0] | |
elif isinstance(output, str): | |
# If output is already a string URL | |
output_url = output | |
elif hasattr(output, 'url'): | |
# If output has a url method | |
output_url = output.url() | |
elif hasattr(output, '__iter__'): | |
# If output is iterable, try to get first item | |
try: | |
output_url = next(iter(output)) | |
except: | |
pass | |
if not output_url: | |
return None, "β Error: No image content found in response" | |
# Download and return the generated image | |
response = requests.get(output_url) | |
if response.status_code == 200: | |
img = Image.open(BytesIO(response.content)) | |
return img, "β Image generated successfully!" | |
else: | |
return None, f"β Error: Failed to download image (Status: {response.status_code})" | |
except Exception as e: | |
return None, f"β Error: {str(e)}" | |
# Create Gradio interface with gradient theme | |
css = """ | |
.gradio-container { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
font-family: 'Inter', sans-serif; | |
} | |
.gr-button { | |
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); | |
border: none; | |
color: white; | |
font-weight: bold; | |
transition: transform 0.2s; | |
} | |
.gr-button:hover { | |
transform: scale(1.05); | |
box-shadow: 0 10px 20px rgba(0,0,0,0.2); | |
} | |
.gr-input { | |
border-radius: 10px; | |
border: 2px solid rgba(255,255,255,0.3); | |
background: rgba(255,255,255,0.9); | |
} | |
.header-text { | |
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
font-size: 2.5em; | |
font-weight: bold; | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
.description-text { | |
color: white; | |
text-align: center; | |
font-size: 1.1em; | |
margin-bottom: 30px; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.2); | |
} | |
""" | |
# Build the Gradio interface | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
gr.HTML(""" | |
<div class="header-text">π¨ AI Image Style Transfer Studio</div> | |
<div class="description-text"> | |
Upload 1-2 images and describe how you want them styled. | |
The AI will create a beautiful transformation! | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### π€ Input Section") | |
prompt = gr.Textbox( | |
label="βοΈ Style Prompt", | |
placeholder="Describe how you want to style your images...", | |
lines=3, | |
value="Make the sheets in the style of the logo. Make the scene natural." | |
) | |
with gr.Row(): | |
image1 = gr.Image( | |
label="Image 1 (Required)", | |
type="pil", | |
height=200 | |
) | |
image2 = gr.Image( | |
label="Image 2 (Optional)", | |
type="pil", | |
height=200 | |
) | |
generate_btn = gr.Button( | |
"π Generate Styled Image", | |
variant="primary", | |
size="lg" | |
) | |
gr.Markdown(""" | |
#### π‘ Tips: | |
- Upload high-quality images for best results | |
- Be specific in your style description | |
- Experiment with different prompts! | |
""") | |
with gr.Column(scale=1): | |
gr.Markdown("### π― Output Section") | |
output_image = gr.Image( | |
label="Generated Image", | |
type="pil", | |
height=400 | |
) | |
status = gr.Textbox( | |
label="Status", | |
interactive=False, | |
lines=2 | |
) | |
# Examples section | |
with gr.Row(): | |
gr.Examples( | |
examples=[ | |
["Transform into watercolor painting style", None, None], | |
["Make it look like a vintage photograph", None, None], | |
["Apply cyberpunk neon style", None, None], | |
["Convert to minimalist line art", None, None], | |
], | |
inputs=[prompt, image1, image2], | |
label="Example Prompts" | |
) | |
# Event handlers | |
generate_btn.click( | |
fn=process_images, | |
inputs=[prompt, image1, image2], | |
outputs=[output_image, status], | |
api_name="generate" | |
) | |
# Additional information | |
gr.Markdown(""" | |
--- | |
### βοΈ Setup Instructions: | |
1. **Set Environment Variable:** | |
```bash | |
export REPLICATE_API_TOKEN="your_api_token_here" | |
``` | |
2. **Install Required Packages:** | |
```bash | |
pip install gradio replicate pillow requests | |
``` | |
3. **Available Models to Try:** | |
- `stability-ai/stable-diffusion` - Text to image generation | |
- `jagilley/controlnet-canny` - Image style transfer with edge detection | |
- `rossjillian/controlnet` - Image controlled generation | |
- Replace the model in the code with your preferred model | |
4. **Note:** For production use, you'll need to: | |
- Implement proper image upload to cloud storage (S3, Cloudinary, etc.) | |
- Add proper error handling and rate limiting | |
- Check the specific input format required by your chosen model | |
### π Security: | |
- API keys are managed through environment variables | |
- Never commit API keys to version control | |
- Consider implementing user authentication for production | |
""") | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch( | |
share=True, | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True | |
) |