Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import replicate
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
import time
|
8 |
+
|
9 |
+
# Set up Replicate API key from environment variable
|
10 |
+
os.environ['REPLICATE_API_TOKEN'] = os.getenv('REPLICATE_API_TOKEN')
|
11 |
+
|
12 |
+
def process_images(prompt, image1, image2=None):
|
13 |
+
"""
|
14 |
+
Process uploaded images with Replicate API
|
15 |
+
"""
|
16 |
+
if not image1:
|
17 |
+
return None, "Please upload at least one image"
|
18 |
+
|
19 |
+
# Check if API token is set
|
20 |
+
if not os.getenv('REPLICATE_API_TOKEN'):
|
21 |
+
return None, "β οΈ Please set REPLICATE_API_TOKEN environment variable"
|
22 |
+
|
23 |
+
try:
|
24 |
+
# Prepare input images list
|
25 |
+
image_inputs = []
|
26 |
+
|
27 |
+
# Convert PIL images to temporary files or use file paths
|
28 |
+
# Note: In production, you'd upload these to a cloud service
|
29 |
+
# For this example, we'll assume the images are accessible via URLs
|
30 |
+
# You may need to upload them to a service like Cloudinary or S3 first
|
31 |
+
|
32 |
+
# This is a placeholder - in real implementation, you'd need to:
|
33 |
+
# 1. Save images temporarily
|
34 |
+
# 2. Upload to a cloud service
|
35 |
+
# 3. Get the URLs
|
36 |
+
|
37 |
+
status_message = "π¨ Processing your images..."
|
38 |
+
|
39 |
+
# Prepare input for Replicate
|
40 |
+
input_data = {
|
41 |
+
"prompt": prompt,
|
42 |
+
"image_input": image_inputs # This should contain actual URLs
|
43 |
+
}
|
44 |
+
|
45 |
+
# Run the model
|
46 |
+
output = replicate.run(
|
47 |
+
"google/nano-banana", # Replace with actual model
|
48 |
+
input=input_data
|
49 |
+
)
|
50 |
+
|
51 |
+
# Get the output URL
|
52 |
+
if hasattr(output, 'url'):
|
53 |
+
output_url = output.url()
|
54 |
+
else:
|
55 |
+
output_url = str(output)
|
56 |
+
|
57 |
+
# Download and return the generated image
|
58 |
+
response = requests.get(output_url)
|
59 |
+
img = Image.open(BytesIO(response.content))
|
60 |
+
|
61 |
+
return img, "β
Image generated successfully!"
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
return None, f"β Error: {str(e)}"
|
65 |
+
|
66 |
+
# Create Gradio interface with gradient theme
|
67 |
+
css = """
|
68 |
+
.gradio-container {
|
69 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
70 |
+
font-family: 'Inter', sans-serif;
|
71 |
+
}
|
72 |
+
.gr-button {
|
73 |
+
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
74 |
+
border: none;
|
75 |
+
color: white;
|
76 |
+
font-weight: bold;
|
77 |
+
transition: transform 0.2s;
|
78 |
+
}
|
79 |
+
.gr-button:hover {
|
80 |
+
transform: scale(1.05);
|
81 |
+
box-shadow: 0 10px 20px rgba(0,0,0,0.2);
|
82 |
+
}
|
83 |
+
.gr-input {
|
84 |
+
border-radius: 10px;
|
85 |
+
border: 2px solid rgba(255,255,255,0.3);
|
86 |
+
background: rgba(255,255,255,0.9);
|
87 |
+
}
|
88 |
+
.header-text {
|
89 |
+
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
90 |
+
-webkit-background-clip: text;
|
91 |
+
-webkit-text-fill-color: transparent;
|
92 |
+
background-clip: text;
|
93 |
+
font-size: 2.5em;
|
94 |
+
font-weight: bold;
|
95 |
+
text-align: center;
|
96 |
+
margin-bottom: 20px;
|
97 |
+
}
|
98 |
+
.description-text {
|
99 |
+
color: white;
|
100 |
+
text-align: center;
|
101 |
+
font-size: 1.1em;
|
102 |
+
margin-bottom: 30px;
|
103 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
|
104 |
+
}
|
105 |
+
"""
|
106 |
+
|
107 |
+
# Build the Gradio interface
|
108 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
109 |
+
gr.HTML("""
|
110 |
+
<div class="header-text">π¨ AI Image Style Transfer Studio</div>
|
111 |
+
<div class="description-text">
|
112 |
+
Upload 1-2 images and describe how you want them styled.
|
113 |
+
The AI will create a beautiful transformation!
|
114 |
+
</div>
|
115 |
+
""")
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column(scale=1):
|
119 |
+
gr.Markdown("### π€ Input Section")
|
120 |
+
|
121 |
+
prompt = gr.Textbox(
|
122 |
+
label="βοΈ Style Prompt",
|
123 |
+
placeholder="Describe how you want to style your images...",
|
124 |
+
lines=3,
|
125 |
+
value="Make the sheets in the style of the logo. Make the scene natural."
|
126 |
+
)
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
image1 = gr.Image(
|
130 |
+
label="Image 1 (Required)",
|
131 |
+
type="pil",
|
132 |
+
height=200
|
133 |
+
)
|
134 |
+
image2 = gr.Image(
|
135 |
+
label="Image 2 (Optional)",
|
136 |
+
type="pil",
|
137 |
+
height=200
|
138 |
+
)
|
139 |
+
|
140 |
+
generate_btn = gr.Button(
|
141 |
+
"π Generate Styled Image",
|
142 |
+
variant="primary",
|
143 |
+
size="lg"
|
144 |
+
)
|
145 |
+
|
146 |
+
gr.Markdown("""
|
147 |
+
#### π‘ Tips:
|
148 |
+
- Upload high-quality images for best results
|
149 |
+
- Be specific in your style description
|
150 |
+
- Experiment with different prompts!
|
151 |
+
""")
|
152 |
+
|
153 |
+
with gr.Column(scale=1):
|
154 |
+
gr.Markdown("### π― Output Section")
|
155 |
+
|
156 |
+
output_image = gr.Image(
|
157 |
+
label="Generated Image",
|
158 |
+
type="pil",
|
159 |
+
height=400
|
160 |
+
)
|
161 |
+
|
162 |
+
status = gr.Textbox(
|
163 |
+
label="Status",
|
164 |
+
interactive=False,
|
165 |
+
lines=2
|
166 |
+
)
|
167 |
+
|
168 |
+
# Examples section
|
169 |
+
with gr.Row():
|
170 |
+
gr.Examples(
|
171 |
+
examples=[
|
172 |
+
["Transform into watercolor painting style", None, None],
|
173 |
+
["Make it look like a vintage photograph", None, None],
|
174 |
+
["Apply cyberpunk neon style", None, None],
|
175 |
+
["Convert to minimalist line art", None, None],
|
176 |
+
],
|
177 |
+
inputs=[prompt, image1, image2],
|
178 |
+
label="Example Prompts"
|
179 |
+
)
|
180 |
+
|
181 |
+
# Event handlers
|
182 |
+
generate_btn.click(
|
183 |
+
fn=process_images,
|
184 |
+
inputs=[prompt, image1, image2],
|
185 |
+
outputsocaloutput_image, status],
|
186 |
+
api_name="generate"
|
187 |
+
)
|
188 |
+
|
189 |
+
# Additional information
|
190 |
+
gr.Markdown("""
|
191 |
+
---
|
192 |
+
### βοΈ Setup Instructions:
|
193 |
+
|
194 |
+
1. **Set Environment Variable:**
|
195 |
+
```bash
|
196 |
+
export REPLICATE_API_TOKEN="your_api_token_here"
|
197 |
+
```
|
198 |
+
|
199 |
+
2. **Install Required Packages:**
|
200 |
+
```bash
|
201 |
+
pip install gradio replicate pillow requests
|
202 |
+
```
|
203 |
+
|
204 |
+
3. **Note:** For production use, you'll need to:
|
205 |
+
- Implement proper image upload to cloud storage (S3, Cloudinary, etc.)
|
206 |
+
- Replace the model name with the actual Replicate model you want to use
|
207 |
+
- Add proper error handling and rate limiting
|
208 |
+
|
209 |
+
### π Security:
|
210 |
+
- API keys are managed through environment variables
|
211 |
+
- Never commit API keys to version control
|
212 |
+
- Consider implementing user authentication for production
|
213 |
+
""")
|
214 |
+
|
215 |
+
# Launch the app
|
216 |
+
if __name__ == "__main__":
|
217 |
+
demo.launch(
|
218 |
+
share=True,
|
219 |
+
server_name="0.0.0.0",
|
220 |
+
server_port=7860,
|
221 |
+
show_error=True
|
222 |
+
)
|