Spaces:
Running
on
Zero
Running
on
Zero
lucapinello
commited on
Commit
·
b074e28
1
Parent(s):
f9cdce6
Add application file
Browse files- app.py +251 -0
- dna-slot-machine.html +726 -0
- dna_diffusion_model.py +283 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DNA-Diffusion Gradio Application
|
3 |
+
Interactive DNA sequence generation with slot machine visualization
|
4 |
+
"""
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import logging
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
from typing import Dict, Any, Tuple
|
11 |
+
import html
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Try to import model, but allow app to run without it for UI development
|
18 |
+
try:
|
19 |
+
from dna_diffusion_model import DNADiffusionModel, get_model
|
20 |
+
MODEL_AVAILABLE = True
|
21 |
+
logger.info("DNA-Diffusion model module loaded successfully")
|
22 |
+
except ImportError as e:
|
23 |
+
logger.warning(f"DNA-Diffusion model not available: {e}")
|
24 |
+
MODEL_AVAILABLE = False
|
25 |
+
|
26 |
+
# Load the HTML interface
|
27 |
+
HTML_FILE = "dna-slot-machine.html"
|
28 |
+
if not os.path.exists(HTML_FILE):
|
29 |
+
raise FileNotFoundError(f"HTML interface file '{HTML_FILE}' not found. Please ensure it exists in the same directory as app.py")
|
30 |
+
|
31 |
+
with open(HTML_FILE, "r") as f:
|
32 |
+
SLOT_MACHINE_HTML = f.read()
|
33 |
+
|
34 |
+
class DNADiffusionApp:
|
35 |
+
"""Main application class for DNA-Diffusion Gradio interface"""
|
36 |
+
|
37 |
+
def __init__(self):
|
38 |
+
self.model = None
|
39 |
+
self.model_loading = False
|
40 |
+
self.model_error = None
|
41 |
+
|
42 |
+
def initialize_model(self):
|
43 |
+
"""Initialize the DNA-Diffusion model"""
|
44 |
+
if not MODEL_AVAILABLE:
|
45 |
+
self.model_error = "DNA-Diffusion model module not available. Please install dependencies."
|
46 |
+
return
|
47 |
+
|
48 |
+
if self.model_loading:
|
49 |
+
return
|
50 |
+
|
51 |
+
self.model_loading = True
|
52 |
+
try:
|
53 |
+
logger.info("Starting model initialization...")
|
54 |
+
self.model = get_model()
|
55 |
+
logger.info("Model initialized successfully!")
|
56 |
+
self.model_error = None
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"Failed to initialize model: {e}")
|
59 |
+
self.model_error = str(e)
|
60 |
+
self.model = None
|
61 |
+
finally:
|
62 |
+
self.model_loading = False
|
63 |
+
|
64 |
+
def generate_sequence(self, cell_type: str, guidance_scale: float = 1.0) -> Tuple[str, Dict[str, Any]]:
|
65 |
+
"""Generate a DNA sequence using the model or mock data"""
|
66 |
+
|
67 |
+
# Use mock generation if model is not available
|
68 |
+
if not MODEL_AVAILABLE or self.model is None:
|
69 |
+
logger.warning("Using mock sequence generation")
|
70 |
+
import random
|
71 |
+
sequence = ''.join(random.choice(['A', 'T', 'C', 'G']) for _ in range(200))
|
72 |
+
metadata = {
|
73 |
+
'cell_type': cell_type,
|
74 |
+
'guidance_scale': guidance_scale,
|
75 |
+
'generation_time': 2.0,
|
76 |
+
'mock': True
|
77 |
+
}
|
78 |
+
# Simulate generation time
|
79 |
+
import time
|
80 |
+
time.sleep(2.0)
|
81 |
+
return sequence, metadata
|
82 |
+
|
83 |
+
# Use real model
|
84 |
+
try:
|
85 |
+
result = self.model.generate(cell_type, guidance_scale)
|
86 |
+
return result['sequence'], result['metadata']
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"Generation failed: {e}")
|
89 |
+
raise
|
90 |
+
|
91 |
+
def handle_generation_request(self, cell_type: str, guidance_scale: float):
|
92 |
+
"""Handle sequence generation request from Gradio"""
|
93 |
+
try:
|
94 |
+
logger.info(f"Generating sequence for cell type: {cell_type}")
|
95 |
+
sequence, metadata = self.generate_sequence(cell_type, guidance_scale)
|
96 |
+
return sequence, json.dumps(metadata)
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
error_msg = str(e)
|
100 |
+
logger.error(f"Generation request failed: {error_msg}")
|
101 |
+
return "", json.dumps({"error": error_msg})
|
102 |
+
|
103 |
+
# Create single app instance
|
104 |
+
app = DNADiffusionApp()
|
105 |
+
|
106 |
+
def create_demo():
|
107 |
+
"""Create the Gradio demo interface"""
|
108 |
+
|
109 |
+
# CSS to hide backend controls
|
110 |
+
css = """
|
111 |
+
#hidden-controls { display: none !important; }
|
112 |
+
"""
|
113 |
+
|
114 |
+
# JavaScript for handling communication between iframe and Gradio
|
115 |
+
js = """
|
116 |
+
function() {
|
117 |
+
console.log('Initializing DNA-Diffusion Gradio interface...');
|
118 |
+
|
119 |
+
// Set up message listener to receive requests from iframe
|
120 |
+
window.addEventListener('message', function(event) {
|
121 |
+
console.log('Parent received message:', event.data);
|
122 |
+
|
123 |
+
if (event.data.type === 'generate_request') {
|
124 |
+
console.log('Triggering generation for cell type:', event.data.cellType);
|
125 |
+
|
126 |
+
// Update the hidden cell type input
|
127 |
+
const radioInputs = document.querySelectorAll('#cell-type-input input[type="radio"]');
|
128 |
+
radioInputs.forEach(input => {
|
129 |
+
if (input.value === event.data.cellType) {
|
130 |
+
input.checked = true;
|
131 |
+
// Trigger change event
|
132 |
+
input.dispatchEvent(new Event('change'));
|
133 |
+
}
|
134 |
+
});
|
135 |
+
|
136 |
+
// Small delay to ensure radio button update is processed
|
137 |
+
setTimeout(() => {
|
138 |
+
document.querySelector('#generate-btn').click();
|
139 |
+
}, 100);
|
140 |
+
}
|
141 |
+
});
|
142 |
+
|
143 |
+
// Function to send sequence to iframe
|
144 |
+
window.sendSequenceToIframe = function(sequence, metadata) {
|
145 |
+
console.log('Sending sequence to iframe:', sequence);
|
146 |
+
const iframe = document.querySelector('#dna-frame iframe');
|
147 |
+
if (iframe && iframe.contentWindow) {
|
148 |
+
try {
|
149 |
+
const meta = JSON.parse(metadata);
|
150 |
+
if (meta.error) {
|
151 |
+
iframe.contentWindow.postMessage({
|
152 |
+
type: 'generation_error',
|
153 |
+
error: meta.error
|
154 |
+
}, '*');
|
155 |
+
} else {
|
156 |
+
iframe.contentWindow.postMessage({
|
157 |
+
type: 'sequence_generated',
|
158 |
+
sequence: sequence,
|
159 |
+
metadata: meta
|
160 |
+
}, '*');
|
161 |
+
}
|
162 |
+
} catch (e) {
|
163 |
+
console.error('Failed to parse metadata:', e);
|
164 |
+
// If parsing fails, still send the sequence
|
165 |
+
iframe.contentWindow.postMessage({
|
166 |
+
type: 'sequence_generated',
|
167 |
+
sequence: sequence,
|
168 |
+
metadata: {}
|
169 |
+
}, '*');
|
170 |
+
}
|
171 |
+
} else {
|
172 |
+
console.error('Could not find iframe');
|
173 |
+
}
|
174 |
+
};
|
175 |
+
}
|
176 |
+
"""
|
177 |
+
|
178 |
+
with gr.Blocks(css=css, js=js, theme=gr.themes.Base()) as demo:
|
179 |
+
|
180 |
+
# Hidden controls for backend processing
|
181 |
+
with gr.Column(elem_id="hidden-controls", visible=False):
|
182 |
+
cell_type_input = gr.Radio(
|
183 |
+
["K562", "GM12878", "HepG2"],
|
184 |
+
value="K562",
|
185 |
+
label="Cell Type",
|
186 |
+
elem_id="cell-type-input"
|
187 |
+
)
|
188 |
+
guidance_input = gr.Slider(
|
189 |
+
minimum=1.0,
|
190 |
+
maximum=10.0,
|
191 |
+
value=1.0,
|
192 |
+
step=0.5,
|
193 |
+
label="Guidance Scale",
|
194 |
+
elem_id="guidance-input"
|
195 |
+
)
|
196 |
+
generate_btn = gr.Button("Generate", elem_id="generate-btn")
|
197 |
+
|
198 |
+
sequence_output = gr.Textbox(label="Sequence", elem_id="sequence-output")
|
199 |
+
metadata_output = gr.Textbox(label="Metadata", elem_id="metadata-output")
|
200 |
+
|
201 |
+
# Main interface - the slot machine in an iframe
|
202 |
+
# Escape the HTML content for srcdoc
|
203 |
+
escaped_html = html.escape(SLOT_MACHINE_HTML, quote=True)
|
204 |
+
iframe_html = f'<iframe srcdoc="{escaped_html}" style="width: 100%; height: 100vh; border: none;"></iframe>'
|
205 |
+
|
206 |
+
html_display = gr.HTML(
|
207 |
+
iframe_html,
|
208 |
+
elem_id="dna-frame"
|
209 |
+
)
|
210 |
+
|
211 |
+
# Wire up the generation
|
212 |
+
generate_btn.click(
|
213 |
+
fn=app.handle_generation_request,
|
214 |
+
inputs=[cell_type_input, guidance_input],
|
215 |
+
outputs=[sequence_output, metadata_output]
|
216 |
+
).then(
|
217 |
+
fn=None,
|
218 |
+
inputs=[sequence_output, metadata_output],
|
219 |
+
outputs=None,
|
220 |
+
js="(seq, meta) => sendSequenceToIframe(seq, meta)"
|
221 |
+
)
|
222 |
+
|
223 |
+
# Initialize model on load
|
224 |
+
demo.load(
|
225 |
+
fn=app.initialize_model,
|
226 |
+
inputs=None,
|
227 |
+
outputs=None
|
228 |
+
)
|
229 |
+
|
230 |
+
return demo
|
231 |
+
|
232 |
+
# Launch the app
|
233 |
+
if __name__ == "__main__":
|
234 |
+
demo = create_demo()
|
235 |
+
|
236 |
+
# Parse any command line arguments
|
237 |
+
import argparse
|
238 |
+
parser = argparse.ArgumentParser(description="DNA-Diffusion Gradio App")
|
239 |
+
parser.add_argument("--share", action="store_true", help="Create a public shareable link")
|
240 |
+
parser.add_argument("--port", type=int, default=7860, help="Port to run the app on")
|
241 |
+
parser.add_argument("--host", type=str, default="127.0.0.1", help="Host to run the app on")
|
242 |
+
args = parser.parse_args()
|
243 |
+
|
244 |
+
logger.info(f"Starting DNA-Diffusion Gradio app on {args.host}:{args.port}")
|
245 |
+
|
246 |
+
demo.launch(
|
247 |
+
share=args.share,
|
248 |
+
server_name=args.host,
|
249 |
+
server_port=args.port,
|
250 |
+
inbrowser=True
|
251 |
+
)
|
dna-slot-machine.html
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>DNA Slot Machine</title>
|
7 |
+
<style>
|
8 |
+
* {
|
9 |
+
margin: 0;
|
10 |
+
padding: 0;
|
11 |
+
box-sizing: border-box;
|
12 |
+
}
|
13 |
+
|
14 |
+
body {
|
15 |
+
background: #0a0a0a;
|
16 |
+
color: #fff;
|
17 |
+
font-family: 'Courier New', monospace;
|
18 |
+
overflow-x: hidden;
|
19 |
+
display: flex;
|
20 |
+
flex-direction: column;
|
21 |
+
align-items: center;
|
22 |
+
justify-content: center;
|
23 |
+
min-height: 100vh;
|
24 |
+
position: relative;
|
25 |
+
}
|
26 |
+
|
27 |
+
body::before {
|
28 |
+
content: '';
|
29 |
+
position: fixed;
|
30 |
+
top: 0;
|
31 |
+
left: 0;
|
32 |
+
width: 100%;
|
33 |
+
height: 100%;
|
34 |
+
background-image:
|
35 |
+
repeating-linear-gradient(
|
36 |
+
0deg,
|
37 |
+
transparent 0px,
|
38 |
+
rgba(255,255,255,0.08) 1px,
|
39 |
+
transparent 1px,
|
40 |
+
transparent 2px
|
41 |
+
),
|
42 |
+
repeating-linear-gradient(
|
43 |
+
90deg,
|
44 |
+
transparent 0px,
|
45 |
+
rgba(0,0,0,0.05) 1px,
|
46 |
+
transparent 1px,
|
47 |
+
transparent 2px
|
48 |
+
),
|
49 |
+
repeating-linear-gradient(
|
50 |
+
45deg,
|
51 |
+
transparent 0px,
|
52 |
+
rgba(255,255,255,0.03) 1px,
|
53 |
+
transparent 2px,
|
54 |
+
transparent 3px
|
55 |
+
),
|
56 |
+
repeating-linear-gradient(
|
57 |
+
-45deg,
|
58 |
+
transparent 0px,
|
59 |
+
rgba(0,0,0,0.03) 1px,
|
60 |
+
transparent 2px,
|
61 |
+
transparent 3px
|
62 |
+
);
|
63 |
+
background-size: 2px 2px, 2px 2px, 3px 3px, 3px 3px;
|
64 |
+
pointer-events: none;
|
65 |
+
z-index: 1;
|
66 |
+
opacity: 0.8;
|
67 |
+
animation: staticNoise 0.1s steps(8) infinite;
|
68 |
+
}
|
69 |
+
|
70 |
+
body::after {
|
71 |
+
content: '';
|
72 |
+
position: fixed;
|
73 |
+
top: 0;
|
74 |
+
left: 0;
|
75 |
+
width: 100%;
|
76 |
+
height: 100%;
|
77 |
+
background:
|
78 |
+
radial-gradient(circle at 17% 23%, rgba(255,255,255,0.1) 0px, transparent 1px),
|
79 |
+
radial-gradient(circle at 67% 71%, rgba(0,0,0,0.08) 0px, transparent 1px),
|
80 |
+
radial-gradient(circle at 41% 57%, rgba(255,255,255,0.06) 0px, transparent 1px),
|
81 |
+
radial-gradient(circle at 89% 13%, rgba(0,0,0,0.07) 0px, transparent 1px),
|
82 |
+
radial-gradient(circle at 23% 89%, rgba(255,255,255,0.05) 0px, transparent 1px);
|
83 |
+
background-size: 3px 3px, 2px 2px, 4px 4px, 2px 2px, 3px 3px;
|
84 |
+
pointer-events: none;
|
85 |
+
z-index: 1;
|
86 |
+
animation: staticNoise 0.15s steps(10) infinite reverse;
|
87 |
+
}
|
88 |
+
|
89 |
+
@keyframes staticNoise {
|
90 |
+
0%, 100% { transform: translate(0, 0); }
|
91 |
+
10% { transform: translate(-1px, -1px); }
|
92 |
+
20% { transform: translate(1px, 0px); }
|
93 |
+
30% { transform: translate(0px, 1px); }
|
94 |
+
40% { transform: translate(-1px, 1px); }
|
95 |
+
50% { transform: translate(1px, -1px); }
|
96 |
+
60% { transform: translate(-1px, 0px); }
|
97 |
+
70% { transform: translate(0px, -1px); }
|
98 |
+
80% { transform: translate(1px, 1px); }
|
99 |
+
90% { transform: translate(-1px, -1px); }
|
100 |
+
}
|
101 |
+
|
102 |
+
.machine-container {
|
103 |
+
background: linear-gradient(145deg, #1a1a1a, #2d2d2d);
|
104 |
+
border-radius: 20px;
|
105 |
+
padding: 20px;
|
106 |
+
padding-right: 100px;
|
107 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.5),
|
108 |
+
inset 0 2px 10px rgba(255,255,255,0.1);
|
109 |
+
width: 95vw;
|
110 |
+
max-width: 1400px;
|
111 |
+
position: relative;
|
112 |
+
z-index: 2;
|
113 |
+
}
|
114 |
+
|
115 |
+
.title {
|
116 |
+
text-align: center;
|
117 |
+
font-size: 2.5rem;
|
118 |
+
margin-bottom: 20px;
|
119 |
+
background: linear-gradient(45deg, #00ff88, #00ffff, #ff00ff);
|
120 |
+
-webkit-background-clip: text;
|
121 |
+
-webkit-text-fill-color: transparent;
|
122 |
+
text-shadow: 0 0 30px rgba(0,255,136,0.5);
|
123 |
+
font-weight: bold;
|
124 |
+
letter-spacing: 0.1em;
|
125 |
+
}
|
126 |
+
|
127 |
+
.cell-type-selector {
|
128 |
+
display: flex;
|
129 |
+
align-items: center;
|
130 |
+
justify-content: center;
|
131 |
+
gap: 20px;
|
132 |
+
margin-bottom: 20px;
|
133 |
+
}
|
134 |
+
|
135 |
+
.cell-type-label {
|
136 |
+
font-size: 1.2rem;
|
137 |
+
color: #ccc;
|
138 |
+
}
|
139 |
+
|
140 |
+
.radio-group {
|
141 |
+
display: flex;
|
142 |
+
gap: 20px;
|
143 |
+
}
|
144 |
+
|
145 |
+
.radio-label {
|
146 |
+
display: flex;
|
147 |
+
align-items: center;
|
148 |
+
gap: 8px;
|
149 |
+
cursor: pointer;
|
150 |
+
font-size: 1.1rem;
|
151 |
+
color: #fff;
|
152 |
+
transition: color 0.3s ease;
|
153 |
+
}
|
154 |
+
|
155 |
+
.radio-label:hover {
|
156 |
+
color: #00ff88;
|
157 |
+
}
|
158 |
+
|
159 |
+
.radio-label input[type="radio"] {
|
160 |
+
width: 18px;
|
161 |
+
height: 18px;
|
162 |
+
accent-color: #00ff88;
|
163 |
+
cursor: pointer;
|
164 |
+
}
|
165 |
+
|
166 |
+
.reels-container {
|
167 |
+
background: #000;
|
168 |
+
border: 3px solid #333;
|
169 |
+
border-radius: 10px;
|
170 |
+
padding: 20px;
|
171 |
+
max-width: 100%;
|
172 |
+
position: relative;
|
173 |
+
box-shadow: inset 0 0 20px rgba(0,0,0,0.5);
|
174 |
+
overflow: visible;
|
175 |
+
}
|
176 |
+
|
177 |
+
.reels-wrapper {
|
178 |
+
display: flex;
|
179 |
+
gap: 1px;
|
180 |
+
min-width: fit-content;
|
181 |
+
padding: 5px 0;
|
182 |
+
justify-content: center;
|
183 |
+
flex-wrap: wrap;
|
184 |
+
max-width: 1200px;
|
185 |
+
margin: 0 auto;
|
186 |
+
}
|
187 |
+
|
188 |
+
.reel {
|
189 |
+
width: 18px;
|
190 |
+
height: 40px;
|
191 |
+
background: #ffffff;
|
192 |
+
border: 1px solid #ddd;
|
193 |
+
border-radius: 2px;
|
194 |
+
overflow: hidden;
|
195 |
+
position: relative;
|
196 |
+
box-shadow: inset 0 0 3px rgba(0,0,0,0.1);
|
197 |
+
}
|
198 |
+
|
199 |
+
.reel-strip {
|
200 |
+
position: absolute;
|
201 |
+
width: 100%;
|
202 |
+
transition: transform 0.5s ease-out;
|
203 |
+
}
|
204 |
+
|
205 |
+
.nucleotide {
|
206 |
+
height: 40px;
|
207 |
+
display: flex;
|
208 |
+
align-items: center;
|
209 |
+
justify-content: center;
|
210 |
+
font-size: 0.9rem;
|
211 |
+
font-weight: bold;
|
212 |
+
background: #ffffff;
|
213 |
+
}
|
214 |
+
|
215 |
+
.nucleotide.A { color: #00ff00; }
|
216 |
+
.nucleotide.T { color: #ff0000; }
|
217 |
+
.nucleotide.C { color: #0000ff; }
|
218 |
+
.nucleotide.G { color: #ffa500; }
|
219 |
+
|
220 |
+
.controls {
|
221 |
+
display: flex;
|
222 |
+
flex-direction: column;
|
223 |
+
align-items: center;
|
224 |
+
gap: 20px;
|
225 |
+
margin-top: 30px;
|
226 |
+
}
|
227 |
+
|
228 |
+
.spin-button {
|
229 |
+
background: #4a4a4a;
|
230 |
+
border: none;
|
231 |
+
padding: 20px 60px;
|
232 |
+
font-size: 1.5rem;
|
233 |
+
font-weight: bold;
|
234 |
+
border-radius: 50px;
|
235 |
+
cursor: pointer;
|
236 |
+
text-transform: uppercase;
|
237 |
+
letter-spacing: 2px;
|
238 |
+
box-shadow: 0 10px 20px rgba(0,0,0,0.5);
|
239 |
+
transition: all 0.3s ease;
|
240 |
+
color: #fff;
|
241 |
+
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
|
242 |
+
position: relative;
|
243 |
+
overflow: hidden;
|
244 |
+
}
|
245 |
+
|
246 |
+
.spin-button::before {
|
247 |
+
content: '';
|
248 |
+
position: absolute;
|
249 |
+
top: 0;
|
250 |
+
left: 0;
|
251 |
+
width: 100%;
|
252 |
+
height: 100%;
|
253 |
+
background-image:
|
254 |
+
radial-gradient(circle at 20% 30%, #00ff00 0px, transparent 2px),
|
255 |
+
radial-gradient(circle at 80% 70%, #ff0000 0px, transparent 2px),
|
256 |
+
radial-gradient(circle at 50% 50%, #0000ff 0px, transparent 2px),
|
257 |
+
radial-gradient(circle at 30% 80%, #ffa500 0px, transparent 2px),
|
258 |
+
radial-gradient(circle at 70% 20%, #00ff00 0px, transparent 2px),
|
259 |
+
radial-gradient(circle at 10% 60%, #ff0000 0px, transparent 2px),
|
260 |
+
radial-gradient(circle at 90% 40%, #0000ff 0px, transparent 2px),
|
261 |
+
radial-gradient(circle at 40% 10%, #ffa500 0px, transparent 2px);
|
262 |
+
background-size: 20px 20px, 25px 25px, 30px 30px, 15px 15px,
|
263 |
+
18px 18px, 22px 22px, 28px 28px, 24px 24px;
|
264 |
+
opacity: 0.25;
|
265 |
+
animation: nucleotideNoise 0.8s steps(6) infinite;
|
266 |
+
}
|
267 |
+
|
268 |
+
.spin-button::after {
|
269 |
+
content: '';
|
270 |
+
position: absolute;
|
271 |
+
top: 0;
|
272 |
+
left: 0;
|
273 |
+
width: 100%;
|
274 |
+
height: 100%;
|
275 |
+
background-image:
|
276 |
+
radial-gradient(circle at 60% 40%, #00ff00 0px, transparent 1px),
|
277 |
+
radial-gradient(circle at 25% 75%, #ff0000 0px, transparent 1px),
|
278 |
+
radial-gradient(circle at 85% 15%, #0000ff 0px, transparent 1px),
|
279 |
+
radial-gradient(circle at 15% 25%, #ffa500 0px, transparent 1px);
|
280 |
+
background-size: 10px 10px, 12px 12px, 14px 14px, 16px 16px;
|
281 |
+
opacity: 0.2;
|
282 |
+
animation: nucleotideNoise 1.2s steps(8) infinite reverse;
|
283 |
+
}
|
284 |
+
|
285 |
+
@keyframes nucleotideNoise {
|
286 |
+
0% { transform: translate(0, 0) scale(1); }
|
287 |
+
16% { transform: translate(-2px, 1px) scale(1.02); }
|
288 |
+
33% { transform: translate(1px, -2px) scale(0.98); }
|
289 |
+
50% { transform: translate(-1px, 2px) scale(1.01); }
|
290 |
+
66% { transform: translate(2px, -1px) scale(0.99); }
|
291 |
+
83% { transform: translate(-2px, -2px) scale(1.02); }
|
292 |
+
100% { transform: translate(1px, 1px) scale(1); }
|
293 |
+
}
|
294 |
+
|
295 |
+
.spin-button span {
|
296 |
+
position: relative;
|
297 |
+
z-index: 2;
|
298 |
+
}
|
299 |
+
|
300 |
+
.spin-button:hover {
|
301 |
+
transform: translateY(-2px);
|
302 |
+
box-shadow: 0 15px 30px rgba(0,0,0,0.6);
|
303 |
+
background: #5a5a5a;
|
304 |
+
}
|
305 |
+
|
306 |
+
.spin-button:hover::before {
|
307 |
+
opacity: 0.35;
|
308 |
+
animation-duration: 0.4s;
|
309 |
+
}
|
310 |
+
|
311 |
+
.spin-button:active {
|
312 |
+
transform: translateY(0);
|
313 |
+
}
|
314 |
+
|
315 |
+
.spin-button:disabled {
|
316 |
+
background: #444;
|
317 |
+
cursor: not-allowed;
|
318 |
+
box-shadow: none;
|
319 |
+
}
|
320 |
+
|
321 |
+
.sequence-display {
|
322 |
+
background: #0a0a0a;
|
323 |
+
border: 2px solid #333;
|
324 |
+
border-radius: 10px;
|
325 |
+
padding: 25px 30px 15px 30px;
|
326 |
+
font-family: 'Courier New', monospace;
|
327 |
+
font-size: 0.9rem;
|
328 |
+
letter-spacing: 1px;
|
329 |
+
width: 100%;
|
330 |
+
max-width: 1200px;
|
331 |
+
text-align: left;
|
332 |
+
word-wrap: break-word;
|
333 |
+
line-height: 1.5;
|
334 |
+
position: relative;
|
335 |
+
margin: 0 auto;
|
336 |
+
}
|
337 |
+
|
338 |
+
.sequence-display::before {
|
339 |
+
content: 'SYNTHETIC REGULATORY ELEMENT';
|
340 |
+
position: absolute;
|
341 |
+
top: -10px;
|
342 |
+
left: 50%;
|
343 |
+
transform: translateX(-50%);
|
344 |
+
background: #0a0a0a;
|
345 |
+
padding: 0 15px;
|
346 |
+
font-size: 0.7rem;
|
347 |
+
color: #00ff88;
|
348 |
+
letter-spacing: 2px;
|
349 |
+
white-space: nowrap;
|
350 |
+
}
|
351 |
+
|
352 |
+
.info {
|
353 |
+
text-align: center;
|
354 |
+
margin-top: 20px;
|
355 |
+
color: #888;
|
356 |
+
font-size: 0.9rem;
|
357 |
+
}
|
358 |
+
|
359 |
+
.lab-credit {
|
360 |
+
text-align: center;
|
361 |
+
margin-top: 15px;
|
362 |
+
font-size: 1.1rem;
|
363 |
+
}
|
364 |
+
|
365 |
+
.lab-credit a {
|
366 |
+
color: #00ff88;
|
367 |
+
text-decoration: none;
|
368 |
+
font-weight: bold;
|
369 |
+
letter-spacing: 1px;
|
370 |
+
transition: all 0.3s ease;
|
371 |
+
padding: 5px 15px;
|
372 |
+
border: 1px solid transparent;
|
373 |
+
border-radius: 20px;
|
374 |
+
}
|
375 |
+
|
376 |
+
.lab-credit a:hover {
|
377 |
+
color: #fff;
|
378 |
+
border-color: #00ff88;
|
379 |
+
box-shadow: 0 0 10px rgba(0,255,136,0.5);
|
380 |
+
text-shadow: 0 0 5px rgba(0,255,136,0.5);
|
381 |
+
}
|
382 |
+
|
383 |
+
@keyframes pulse {
|
384 |
+
0% { opacity: 0.5; }
|
385 |
+
50% { opacity: 1; }
|
386 |
+
100% { opacity: 0.5; }
|
387 |
+
}
|
388 |
+
|
389 |
+
.spinning {
|
390 |
+
animation: pulse 0.5s infinite;
|
391 |
+
}
|
392 |
+
|
393 |
+
.winning-flash {
|
394 |
+
animation: winFlash 1s ease-out;
|
395 |
+
}
|
396 |
+
|
397 |
+
@keyframes winFlash {
|
398 |
+
0%, 100% { background-color: transparent; }
|
399 |
+
50% { background-color: rgba(0,255,136,0.2); }
|
400 |
+
}
|
401 |
+
|
402 |
+
.lever-container {
|
403 |
+
position: absolute;
|
404 |
+
right: -70px;
|
405 |
+
top: 50%;
|
406 |
+
transform: translateY(-50%);
|
407 |
+
z-index: 3;
|
408 |
+
width: 60px;
|
409 |
+
height: 200px;
|
410 |
+
}
|
411 |
+
|
412 |
+
.lever {
|
413 |
+
width: 100%;
|
414 |
+
height: 100%;
|
415 |
+
position: relative;
|
416 |
+
cursor: pointer;
|
417 |
+
}
|
418 |
+
|
419 |
+
.lever-mount {
|
420 |
+
position: absolute;
|
421 |
+
top: 90px;
|
422 |
+
left: -10px;
|
423 |
+
width: 40px;
|
424 |
+
height: 60px;
|
425 |
+
background: linear-gradient(180deg, #555, #333);
|
426 |
+
border-radius: 5px 0 0 5px;
|
427 |
+
box-shadow:
|
428 |
+
0 3px 10px rgba(0,0,0,0.3),
|
429 |
+
inset 0 1px 2px rgba(255,255,255,0.1);
|
430 |
+
}
|
431 |
+
|
432 |
+
.lever-pivot {
|
433 |
+
position: absolute;
|
434 |
+
bottom: 30px;
|
435 |
+
left: 50%;
|
436 |
+
transform: translateX(-50%);
|
437 |
+
width: 30px;
|
438 |
+
height: 8px;
|
439 |
+
background: #888;
|
440 |
+
border-radius: 4px;
|
441 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.3);
|
442 |
+
}
|
443 |
+
|
444 |
+
.lever-arm {
|
445 |
+
position: absolute;
|
446 |
+
top: 40px;
|
447 |
+
left: 5px;
|
448 |
+
width: 10px;
|
449 |
+
height: 80px;
|
450 |
+
background: linear-gradient(180deg, #d0d0d0, #a0a0a0);
|
451 |
+
border-radius: 5px;
|
452 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.3);
|
453 |
+
transition: all 0.6s cubic-bezier(0.68, -0.55, 0.265, 1.55);
|
454 |
+
}
|
455 |
+
|
456 |
+
.lever-ball {
|
457 |
+
position: absolute;
|
458 |
+
top: -30px;
|
459 |
+
left: 50%;
|
460 |
+
transform: translateX(-50%);
|
461 |
+
width: 60px;
|
462 |
+
height: 60px;
|
463 |
+
background: radial-gradient(circle at 35% 35%, #ff8888, #ff4444, #cc0000);
|
464 |
+
border-radius: 50%;
|
465 |
+
box-shadow:
|
466 |
+
0 5px 15px rgba(0,0,0,0.4),
|
467 |
+
inset -5px -5px 10px rgba(0,0,0,0.3),
|
468 |
+
inset 3px 3px 5px rgba(255,255,255,0.5);
|
469 |
+
}
|
470 |
+
|
471 |
+
.lever.pulled .lever-arm {
|
472 |
+
transform: translateY(80px);
|
473 |
+
height: 10px;
|
474 |
+
}
|
475 |
+
|
476 |
+
/* Continuous spinning animation for loading */
|
477 |
+
@keyframes continuousSpin {
|
478 |
+
from { transform: translateY(0); }
|
479 |
+
to { transform: translateY(-160px); }
|
480 |
+
}
|
481 |
+
|
482 |
+
.reel-strip.loading {
|
483 |
+
animation: continuousSpin 1s linear infinite;
|
484 |
+
}
|
485 |
+
</style>
|
486 |
+
</head>
|
487 |
+
<body>
|
488 |
+
<div class="machine-container">
|
489 |
+
<h1 class="title">DNA-DIFFUSION</h1>
|
490 |
+
|
491 |
+
<div class="cell-type-selector">
|
492 |
+
<label class="cell-type-label">Cell Type-Specific Generation:</label>
|
493 |
+
<div class="radio-group">
|
494 |
+
<label class="radio-label">
|
495 |
+
<input type="radio" name="cellType" value="K562" checked>
|
496 |
+
<span>K562</span>
|
497 |
+
</label>
|
498 |
+
<label class="radio-label">
|
499 |
+
<input type="radio" name="cellType" value="GM12878">
|
500 |
+
<span>GM12878</span>
|
501 |
+
</label>
|
502 |
+
<label class="radio-label">
|
503 |
+
<input type="radio" name="cellType" value="HepG2">
|
504 |
+
<span>HepG2</span>
|
505 |
+
</label>
|
506 |
+
</div>
|
507 |
+
</div>
|
508 |
+
|
509 |
+
<div class="reels-container" id="reelsContainer">
|
510 |
+
<div class="reels-wrapper" id="reelsWrapper"></div>
|
511 |
+
<div class="lever-container">
|
512 |
+
<div class="lever" id="lever">
|
513 |
+
<div class="lever-mount">
|
514 |
+
<div class="lever-pivot"></div>
|
515 |
+
</div>
|
516 |
+
<div class="lever-arm">
|
517 |
+
<div class="lever-ball"></div>
|
518 |
+
</div>
|
519 |
+
</div>
|
520 |
+
</div>
|
521 |
+
</div>
|
522 |
+
|
523 |
+
<div class="controls">
|
524 |
+
<button class="spin-button" id="spinButton"><span>GENERATE</span></button>
|
525 |
+
<div class="sequence-display" id="sequenceDisplay">
|
526 |
+
Press GENERATE to create sequence
|
527 |
+
</div>
|
528 |
+
</div>
|
529 |
+
|
530 |
+
<div class="info">
|
531 |
+
200bp Regulatory Elements · Cell Type-Specific · Synthetic Biology
|
532 |
+
</div>
|
533 |
+
|
534 |
+
<div class="lab-credit">
|
535 |
+
<a href="https://pinellolab.org" target="_blank" rel="noopener noreferrer">
|
536 |
+
Pinello Lab
|
537 |
+
</a>
|
538 |
+
</div>
|
539 |
+
</div>
|
540 |
+
|
541 |
+
<script>
|
542 |
+
const NUCLEOTIDES = ['A', 'T', 'C', 'G'];
|
543 |
+
const REEL_COUNT = 200;
|
544 |
+
let TARGET_SEQUENCE = '';
|
545 |
+
|
546 |
+
let reels = [];
|
547 |
+
let isSpinning = false;
|
548 |
+
|
549 |
+
function generateRandomSequence() {
|
550 |
+
let sequence = '';
|
551 |
+
for (let i = 0; i < REEL_COUNT; i++) {
|
552 |
+
sequence += NUCLEOTIDES[Math.floor(Math.random() * 4)];
|
553 |
+
}
|
554 |
+
return sequence;
|
555 |
+
}
|
556 |
+
|
557 |
+
function createReel(index) {
|
558 |
+
const reel = document.createElement('div');
|
559 |
+
reel.className = 'reel';
|
560 |
+
|
561 |
+
const strip = document.createElement('div');
|
562 |
+
strip.className = 'reel-strip';
|
563 |
+
|
564 |
+
// Create multiple nucleotides for smooth spinning effect
|
565 |
+
for (let i = 0; i < 10; i++) {
|
566 |
+
NUCLEOTIDES.forEach(n => {
|
567 |
+
const nucleotide = document.createElement('div');
|
568 |
+
nucleotide.className = `nucleotide ${n}`;
|
569 |
+
nucleotide.textContent = n;
|
570 |
+
strip.appendChild(nucleotide);
|
571 |
+
});
|
572 |
+
}
|
573 |
+
|
574 |
+
reel.appendChild(strip);
|
575 |
+
return { element: reel, strip: strip, currentPosition: 0 };
|
576 |
+
}
|
577 |
+
|
578 |
+
function initializeReels() {
|
579 |
+
const wrapper = document.getElementById('reelsWrapper');
|
580 |
+
wrapper.innerHTML = '';
|
581 |
+
reels = [];
|
582 |
+
|
583 |
+
for (let i = 0; i < REEL_COUNT; i++) {
|
584 |
+
const reel = createReel(i);
|
585 |
+
reels.push(reel);
|
586 |
+
wrapper.appendChild(reel.element);
|
587 |
+
|
588 |
+
// Set initial position to show a random nucleotide
|
589 |
+
const randomIndex = Math.floor(Math.random() * 4);
|
590 |
+
const initialOffset = -randomIndex * 40;
|
591 |
+
reel.strip.style.transform = `translateY(${initialOffset}px)`;
|
592 |
+
reel.currentPosition = randomIndex * 40;
|
593 |
+
}
|
594 |
+
}
|
595 |
+
|
596 |
+
function startContinuousSpinning() {
|
597 |
+
reels.forEach((reel, index) => {
|
598 |
+
// Add continuous spinning animation
|
599 |
+
reel.strip.style.transition = 'none';
|
600 |
+
reel.strip.classList.add('loading');
|
601 |
+
|
602 |
+
// Add slight delay variation for visual effect
|
603 |
+
const delay = (index % 10) * 0.1;
|
604 |
+
reel.strip.style.animationDelay = `${delay}s`;
|
605 |
+
});
|
606 |
+
}
|
607 |
+
|
608 |
+
function stopAndShowSequence(sequence) {
|
609 |
+
TARGET_SEQUENCE = sequence;
|
610 |
+
|
611 |
+
reels.forEach((reel, index) => {
|
612 |
+
// Remove continuous spinning
|
613 |
+
reel.strip.classList.remove('loading');
|
614 |
+
|
615 |
+
// Calculate target position
|
616 |
+
const targetNucleotide = TARGET_SEQUENCE[index];
|
617 |
+
const targetIndex = NUCLEOTIDES.indexOf(targetNucleotide);
|
618 |
+
const finalPosition = targetIndex * 40;
|
619 |
+
|
620 |
+
// Set up the final positioning animation
|
621 |
+
setTimeout(() => {
|
622 |
+
reel.strip.style.transition = `transform ${1000 + index * 5}ms cubic-bezier(0.17, 0.67, 0.12, 0.99)`;
|
623 |
+
reel.strip.style.transform = `translateY(${-finalPosition}px)`;
|
624 |
+
reel.currentPosition = finalPosition;
|
625 |
+
}, index * 2);
|
626 |
+
});
|
627 |
+
|
628 |
+
// Show the complete sequence after animation
|
629 |
+
setTimeout(() => {
|
630 |
+
const container = document.getElementById('reelsContainer');
|
631 |
+
const display = document.getElementById('sequenceDisplay');
|
632 |
+
const button = document.getElementById('spinButton');
|
633 |
+
const lever = document.getElementById('lever');
|
634 |
+
|
635 |
+
container.classList.remove('spinning');
|
636 |
+
container.classList.add('winning-flash');
|
637 |
+
|
638 |
+
display.innerHTML = `<strong>Generated Sequence:</strong><br>${TARGET_SEQUENCE}`;
|
639 |
+
button.disabled = false;
|
640 |
+
isSpinning = false;
|
641 |
+
|
642 |
+
// Release the lever
|
643 |
+
lever.classList.remove('pulled');
|
644 |
+
|
645 |
+
setTimeout(() => {
|
646 |
+
container.classList.remove('winning-flash');
|
647 |
+
}, 1000);
|
648 |
+
}, 1500);
|
649 |
+
}
|
650 |
+
|
651 |
+
function startGeneration() {
|
652 |
+
if (isSpinning) return;
|
653 |
+
|
654 |
+
isSpinning = true;
|
655 |
+
const button = document.getElementById('spinButton');
|
656 |
+
const display = document.getElementById('sequenceDisplay');
|
657 |
+
const container = document.getElementById('reelsContainer');
|
658 |
+
const lever = document.getElementById('lever');
|
659 |
+
|
660 |
+
// Pull the lever
|
661 |
+
lever.classList.add('pulled');
|
662 |
+
|
663 |
+
button.disabled = true;
|
664 |
+
display.textContent = 'Generating cell type-specific regulatory element...';
|
665 |
+
container.classList.add('spinning');
|
666 |
+
|
667 |
+
// Start continuous spinning immediately
|
668 |
+
startContinuousSpinning();
|
669 |
+
|
670 |
+
// Get selected cell type
|
671 |
+
const cellType = document.querySelector('input[name="cellType"]:checked').value;
|
672 |
+
|
673 |
+
// Send request to parent window
|
674 |
+
window.parent.postMessage({
|
675 |
+
type: 'generate_request',
|
676 |
+
cellType: cellType
|
677 |
+
}, '*');
|
678 |
+
}
|
679 |
+
|
680 |
+
// Initialize
|
681 |
+
initializeReels();
|
682 |
+
|
683 |
+
// Event listeners
|
684 |
+
document.getElementById('spinButton').addEventListener('click', startGeneration);
|
685 |
+
|
686 |
+
// Lever click functionality
|
687 |
+
document.getElementById('lever').addEventListener('click', function() {
|
688 |
+
if (!isSpinning) {
|
689 |
+
startGeneration();
|
690 |
+
}
|
691 |
+
});
|
692 |
+
|
693 |
+
// Listen for messages from parent window
|
694 |
+
window.addEventListener('message', (event) => {
|
695 |
+
if (event.data.type === 'sequence_generated') {
|
696 |
+
// Stop spinning and show the actual sequence
|
697 |
+
stopAndShowSequence(event.data.sequence);
|
698 |
+
} else if (event.data.type === 'generation_error') {
|
699 |
+
// Stop spinning and show error
|
700 |
+
reels.forEach(reel => {
|
701 |
+
reel.strip.classList.remove('loading');
|
702 |
+
});
|
703 |
+
|
704 |
+
const container = document.getElementById('reelsContainer');
|
705 |
+
const display = document.getElementById('sequenceDisplay');
|
706 |
+
const button = document.getElementById('spinButton');
|
707 |
+
const lever = document.getElementById('lever');
|
708 |
+
|
709 |
+
container.classList.remove('spinning');
|
710 |
+
display.innerHTML = '<strong style="color: #F44336;">Error:</strong> ' + event.data.error;
|
711 |
+
button.disabled = false;
|
712 |
+
isSpinning = false;
|
713 |
+
lever.classList.remove('pulled');
|
714 |
+
}
|
715 |
+
});
|
716 |
+
|
717 |
+
// Keyboard support
|
718 |
+
document.addEventListener('keydown', (e) => {
|
719 |
+
if (e.code === 'Space' && !isSpinning) {
|
720 |
+
e.preventDefault();
|
721 |
+
startGeneration();
|
722 |
+
}
|
723 |
+
});
|
724 |
+
</script>
|
725 |
+
</body>
|
726 |
+
</html>
|
dna_diffusion_model.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DNA-Diffusion Model Wrapper
|
3 |
+
Singleton class to handle model loading and sequence generation
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import logging
|
11 |
+
from typing import Optional, Dict, List
|
12 |
+
import time
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
class DNADiffusionModel:
|
17 |
+
"""Singleton wrapper for DNA-Diffusion model"""
|
18 |
+
_instance = None
|
19 |
+
_initialized = False
|
20 |
+
|
21 |
+
# Cell type mapping from simple names to dataset identifiers
|
22 |
+
CELL_TYPE_MAPPING = {
|
23 |
+
'K562': 'K562_ENCLB843GMH',
|
24 |
+
'GM12878': 'GM12878_ENCLB441ZZZ',
|
25 |
+
'HepG2': 'HepG2_ENCLB029COU',
|
26 |
+
'hESCT0': 'hESCT0_ENCLB449ZZZ'
|
27 |
+
}
|
28 |
+
|
29 |
+
def __new__(cls):
|
30 |
+
if cls._instance is None:
|
31 |
+
cls._instance = super().__new__(cls)
|
32 |
+
return cls._instance
|
33 |
+
|
34 |
+
def __init__(self):
|
35 |
+
"""Initialize the model (only runs once due to singleton pattern)"""
|
36 |
+
if not self._initialized:
|
37 |
+
self._initialize()
|
38 |
+
self._initialized = True
|
39 |
+
|
40 |
+
def _initialize(self):
|
41 |
+
"""Load model and setup components"""
|
42 |
+
try:
|
43 |
+
logger.info("Initializing DNA-Diffusion model...")
|
44 |
+
|
45 |
+
# Add DNA-Diffusion to path
|
46 |
+
dna_diffusion_path = os.path.join(os.path.dirname(__file__), 'DNA-Diffusion')
|
47 |
+
if os.path.exists(dna_diffusion_path):
|
48 |
+
sys.path.insert(0, os.path.join(dna_diffusion_path, 'src'))
|
49 |
+
|
50 |
+
# Import DNA-Diffusion components
|
51 |
+
from dnadiffusion.models.pretrained_unet import PretrainedUNet
|
52 |
+
from dnadiffusion.models.diffusion import Diffusion
|
53 |
+
from dnadiffusion.data.dataloader import get_dataset_for_sampling
|
54 |
+
|
55 |
+
# Load pretrained model from HuggingFace
|
56 |
+
logger.info("Loading pretrained model from HuggingFace...")
|
57 |
+
self.model = PretrainedUNet.from_pretrained("ssenan/DNA-Diffusion")
|
58 |
+
|
59 |
+
# Move to GPU if available
|
60 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
logger.info(f"Using device: {self.device}")
|
62 |
+
self.model = self.model.to(self.device)
|
63 |
+
self.model.eval()
|
64 |
+
|
65 |
+
# Initialize diffusion sampler with the model
|
66 |
+
self.diffusion = Diffusion(
|
67 |
+
model=self.model,
|
68 |
+
timesteps=50,
|
69 |
+
beta_start=0.0001,
|
70 |
+
beta_end=0.2
|
71 |
+
)
|
72 |
+
|
73 |
+
# Ensure output_attention is set to False initially
|
74 |
+
if hasattr(self.model, 'output_attention'):
|
75 |
+
self.model.output_attention = False
|
76 |
+
if hasattr(self.model.model, 'output_attention'):
|
77 |
+
self.model.model.output_attention = False
|
78 |
+
|
79 |
+
# Setup dataset for sampling
|
80 |
+
data_path = os.path.join(dna_diffusion_path, "data/K562_hESCT0_HepG2_GM12878_12k_sequences_per_group.txt")
|
81 |
+
saved_data_path = os.path.join(dna_diffusion_path, "data/encode_data.pkl")
|
82 |
+
|
83 |
+
# Get dataset info
|
84 |
+
train_data, val_data, cell_num_list, numeric_to_tag_dict = get_dataset_for_sampling(
|
85 |
+
data_path=data_path,
|
86 |
+
saved_data_path=saved_data_path,
|
87 |
+
load_saved_data=True,
|
88 |
+
debug=False,
|
89 |
+
cell_types=None # Load all cell types
|
90 |
+
)
|
91 |
+
|
92 |
+
# Store dataset info
|
93 |
+
self.train_data = train_data
|
94 |
+
self.val_data = val_data
|
95 |
+
self.cell_num_list = cell_num_list
|
96 |
+
self.numeric_to_tag_dict = numeric_to_tag_dict
|
97 |
+
|
98 |
+
# Get available cell types
|
99 |
+
self.available_cell_types = [numeric_to_tag_dict[num] for num in cell_num_list]
|
100 |
+
logger.info(f"Available cell types: {self.available_cell_types}")
|
101 |
+
|
102 |
+
# Warm up the model with a test generation
|
103 |
+
logger.info("Warming up model...")
|
104 |
+
self._warmup()
|
105 |
+
|
106 |
+
logger.info("Model initialization complete!")
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
logger.error(f"Failed to initialize model: {str(e)}")
|
110 |
+
self.model = None
|
111 |
+
self.diffusion = None
|
112 |
+
self.dataset = None
|
113 |
+
raise
|
114 |
+
|
115 |
+
def _warmup(self):
|
116 |
+
"""Warm up the model with a test generation"""
|
117 |
+
try:
|
118 |
+
# Generate one sequence for the first available cell type
|
119 |
+
if self.available_cell_types:
|
120 |
+
cell_type = list(self.CELL_TYPE_MAPPING.keys())[0]
|
121 |
+
self.generate(cell_type, guidance_scale=1.0)
|
122 |
+
except Exception as e:
|
123 |
+
logger.warning(f"Warmup generation failed: {str(e)}")
|
124 |
+
|
125 |
+
def is_ready(self) -> bool:
|
126 |
+
"""Check if model is loaded and ready"""
|
127 |
+
return self.model is not None and self.diffusion is not None and self.train_data is not None
|
128 |
+
|
129 |
+
def generate(self, cell_type: str, guidance_scale: float = 1.0) -> Dict[str, any]:
|
130 |
+
"""
|
131 |
+
Generate a DNA sequence for the specified cell type
|
132 |
+
|
133 |
+
Args:
|
134 |
+
cell_type: Simple cell type name (K562, GM12878, HepG2, hESCT0)
|
135 |
+
guidance_scale: Guidance scale for generation (1.0-10.0)
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
Dict with 'sequence' (200bp string) and 'metadata'
|
139 |
+
"""
|
140 |
+
if not self.is_ready():
|
141 |
+
raise RuntimeError("Model is not initialized")
|
142 |
+
|
143 |
+
# Validate inputs
|
144 |
+
if cell_type not in self.CELL_TYPE_MAPPING:
|
145 |
+
raise ValueError(f"Invalid cell type: {cell_type}. Must be one of {list(self.CELL_TYPE_MAPPING.keys())}")
|
146 |
+
|
147 |
+
if not 1.0 <= guidance_scale <= 10.0:
|
148 |
+
raise ValueError(f"Guidance scale must be between 1.0 and 10.0, got {guidance_scale}")
|
149 |
+
|
150 |
+
# Map to full cell type identifier
|
151 |
+
full_cell_type = self.CELL_TYPE_MAPPING[cell_type]
|
152 |
+
|
153 |
+
# Find the numeric index for this cell type
|
154 |
+
tag_to_numeric = {tag: num for num, tag in self.numeric_to_tag_dict.items()}
|
155 |
+
|
156 |
+
# Find matching cell type (case-insensitive partial match)
|
157 |
+
cell_type_numeric = None
|
158 |
+
for tag, num in tag_to_numeric.items():
|
159 |
+
if full_cell_type.lower() in tag.lower() or tag.lower() in full_cell_type.lower():
|
160 |
+
cell_type_numeric = num
|
161 |
+
logger.info(f"Matched '{full_cell_type}' to '{tag}'")
|
162 |
+
break
|
163 |
+
|
164 |
+
if cell_type_numeric is None:
|
165 |
+
raise ValueError(f"Cell type {full_cell_type} not found in dataset. Available: {list(self.numeric_to_tag_dict.values())}")
|
166 |
+
|
167 |
+
try:
|
168 |
+
logger.info(f"Generating sequence for {cell_type} (guidance={guidance_scale})...")
|
169 |
+
start_time = time.time()
|
170 |
+
|
171 |
+
# For now, use simple generation without classifier-free guidance
|
172 |
+
# TODO: Fix classifier-free guidance implementation
|
173 |
+
sequence = self._generate_simple(cell_type_numeric, guidance_scale)
|
174 |
+
|
175 |
+
generation_time = time.time() - start_time
|
176 |
+
logger.info(f"Generated sequence in {generation_time:.2f}s")
|
177 |
+
|
178 |
+
return {
|
179 |
+
'sequence': sequence,
|
180 |
+
'metadata': {
|
181 |
+
'cell_type': cell_type,
|
182 |
+
'full_cell_type': full_cell_type,
|
183 |
+
'guidance_scale': guidance_scale,
|
184 |
+
'generation_time': generation_time,
|
185 |
+
'sequence_length': len(sequence)
|
186 |
+
}
|
187 |
+
}
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
logger.error(f"Generation failed: {str(e)}")
|
191 |
+
raise
|
192 |
+
|
193 |
+
def _generate_simple(self, cell_type_idx: int, guidance_scale: float) -> str:
|
194 |
+
"""Simple generation using the diffusion model's sample method"""
|
195 |
+
with torch.no_grad():
|
196 |
+
# For guidance_scale = 1.0, use simple generation without classifier-free guidance
|
197 |
+
if guidance_scale == 1.0:
|
198 |
+
# Create initial noise
|
199 |
+
img = torch.randn((1, 1, 4, 200), device=self.device)
|
200 |
+
|
201 |
+
# Simple denoising loop without guidance
|
202 |
+
for i in reversed(range(self.diffusion.timesteps)):
|
203 |
+
t = torch.full((1,), i, device=self.device, dtype=torch.long)
|
204 |
+
|
205 |
+
# Get model prediction with classes
|
206 |
+
classes = torch.tensor([cell_type_idx], device=self.device, dtype=torch.long)
|
207 |
+
noise_pred = self.model(img, time=t, classes=classes)
|
208 |
+
|
209 |
+
# Denoising step
|
210 |
+
betas_t = self.diffusion.betas[i]
|
211 |
+
sqrt_one_minus_alphas_cumprod_t = self.diffusion.sqrt_one_minus_alphas_cumprod[i]
|
212 |
+
sqrt_recip_alphas_t = self.diffusion.sqrt_recip_alphas[i]
|
213 |
+
|
214 |
+
# Predict x0
|
215 |
+
model_mean = sqrt_recip_alphas_t * (img - betas_t * noise_pred / sqrt_one_minus_alphas_cumprod_t)
|
216 |
+
|
217 |
+
if i == 0:
|
218 |
+
img = model_mean
|
219 |
+
else:
|
220 |
+
posterior_variance_t = self.diffusion.posterior_variance[i]
|
221 |
+
noise = torch.randn_like(img)
|
222 |
+
img = model_mean + torch.sqrt(posterior_variance_t) * noise
|
223 |
+
|
224 |
+
final_image = img[0] # Remove batch dimension
|
225 |
+
else:
|
226 |
+
# Use the diffusion model's built-in sample method with guidance
|
227 |
+
# This requires proper context mask handling which is complex
|
228 |
+
# For now, fall back to simple generation
|
229 |
+
logger.warning(f"Guidance scale {guidance_scale} not fully implemented, using simple generation")
|
230 |
+
return self._generate_simple(cell_type_idx, 1.0)
|
231 |
+
|
232 |
+
# Convert to sequence
|
233 |
+
final_array = final_image.cpu().numpy()
|
234 |
+
sequence = self._array_to_sequence(final_array)
|
235 |
+
|
236 |
+
return sequence
|
237 |
+
|
238 |
+
def _array_to_sequence(self, array: np.ndarray) -> str:
|
239 |
+
"""Convert model output array to DNA sequence string"""
|
240 |
+
# Get nucleotide mapping
|
241 |
+
nucleotides = ['A', 'C', 'G', 'T']
|
242 |
+
|
243 |
+
# array shape is (1, 4, 200) - channels, nucleotides, sequence_length
|
244 |
+
# Reshape to (4, 200) and get argmax along nucleotide dimension
|
245 |
+
array = array.squeeze(0) # Remove channel dimension -> (4, 200)
|
246 |
+
indices = np.argmax(array, axis=0) # Get max nucleotide for each position
|
247 |
+
|
248 |
+
# Convert indices to nucleotides
|
249 |
+
sequence = ''.join(nucleotides[int(idx)] for idx in indices)
|
250 |
+
|
251 |
+
return sequence
|
252 |
+
|
253 |
+
def get_model_info(self) -> Dict[str, any]:
|
254 |
+
"""Get information about the loaded model"""
|
255 |
+
if not self.is_ready():
|
256 |
+
return {'status': 'not_initialized'}
|
257 |
+
|
258 |
+
return {
|
259 |
+
'status': 'ready',
|
260 |
+
'device': str(self.device),
|
261 |
+
'cell_types': list(self.CELL_TYPE_MAPPING.keys()),
|
262 |
+
'full_cell_types': self.available_cell_types,
|
263 |
+
'model_name': 'ssenan/DNA-Diffusion',
|
264 |
+
'sequence_length': 200,
|
265 |
+
'guidance_scale_range': [1.0, 10.0]
|
266 |
+
}
|
267 |
+
|
268 |
+
|
269 |
+
# Convenience functions for direct usage
|
270 |
+
_model_instance = None
|
271 |
+
|
272 |
+
def get_model() -> DNADiffusionModel:
|
273 |
+
"""Get or create the singleton model instance"""
|
274 |
+
global _model_instance
|
275 |
+
if _model_instance is None:
|
276 |
+
_model_instance = DNADiffusionModel()
|
277 |
+
return _model_instance
|
278 |
+
|
279 |
+
def generate_sequence(cell_type: str, guidance_scale: float = 1.0) -> str:
|
280 |
+
"""Generate a DNA sequence (convenience function)"""
|
281 |
+
model = get_model()
|
282 |
+
result = model.generate(cell_type, guidance_scale)
|
283 |
+
return result['sequence']
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies for Gradio DNA-Diffusion app
|
2 |
+
gradio>=4.44.0
|
3 |
+
torch>=2.0.0
|
4 |
+
transformers>=4.30.0
|
5 |
+
numpy>=1.24.0
|
6 |
+
|
7 |
+
# Model loading and utilities
|
8 |
+
huggingface-hub>=0.16.0
|
9 |
+
safetensors>=0.3.0
|
10 |
+
accelerate>=0.20.0
|
11 |
+
|
12 |
+
# Note: DNA-Diffusion itself should be installed separately using uv:
|
13 |
+
# git clone https://github.com/pinellolab/DNA-Diffusion.git
|
14 |
+
# cd DNA-Diffusion && uv sync
|