""" DNA-Diffusion Gradio Application Interactive DNA sequence generation with slot machine visualization and protein analysis """ import gradio as gr import logging import json import os from typing import Dict, Any, Tuple import html import requests import time # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Try to import spaces for GPU decoration try: import spaces SPACES_AVAILABLE = True except ImportError: SPACES_AVAILABLE = False # Create a dummy decorator if spaces is not available class spaces: @staticmethod def GPU(duration=60): def decorator(func): return func return decorator # Try to import model, but allow app to run without it for UI development try: from dna_diffusion_model import DNADiffusionModel, get_model MODEL_AVAILABLE = True logger.info("DNA-Diffusion model module loaded successfully") except ImportError as e: logger.warning(f"DNA-Diffusion model not available: {e}") MODEL_AVAILABLE = False # Load the HTML interface HTML_FILE = "dna-slot-machine.html" if not os.path.exists(HTML_FILE): raise FileNotFoundError(f"HTML interface file '{HTML_FILE}' not found. Please ensure it exists in the same directory as app.py") with open(HTML_FILE, "r") as f: SLOT_MACHINE_HTML = f.read() class ProteinAnalyzer: """Handles protein translation and analysis using LLM""" # Genetic code table for DNA to amino acid translation CODON_TABLE = { 'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L', 'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S', 'TAT': 'Y', 'TAC': 'Y', 'TAA': '*', 'TAG': '*', 'TGT': 'C', 'TGC': 'C', 'TGA': '*', 'TGG': 'W', 'CTT': 'L', 'CTC': 'L', 'CTA': 'L', 'CTG': 'L', 'CCT': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P', 'CAT': 'H', 'CAC': 'H', 'CAA': 'Q', 'CAG': 'Q', 'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R', 'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M', 'ACT': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T', 'AAT': 'N', 'AAC': 'N', 'AAA': 'K', 'AAG': 'K', 'AGT': 'S', 'AGC': 'S', 'AGA': 'R', 'AGG': 'R', 'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V', 'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A', 'GAT': 'D', 'GAC': 'D', 'GAA': 'E', 'GAG': 'E', 'GGT': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G' } @staticmethod def dna_to_protein(dna_sequence: str) -> str: """Translate DNA sequence to protein sequence""" # Ensure sequence is uppercase dna_sequence = dna_sequence.upper() # Remove any non-DNA characters dna_sequence = ''.join(c for c in dna_sequence if c in 'ATCG') # Translate to protein protein = [] for i in range(0, len(dna_sequence) - 2, 3): codon = dna_sequence[i:i+3] if len(codon) == 3: amino_acid = ProteinAnalyzer.CODON_TABLE.get(codon, 'X') if amino_acid == '*': # Stop codon break protein.append(amino_acid) return ''.join(protein) @staticmethod def analyze_protein_with_llm(protein_sequence: str, cell_type: str, language: str = "en") -> str: """Analyze protein structure and function using Friendli LLM API""" # Get API token from environment token = os.getenv("FRIENDLI_TOKEN") if not token: logger.warning("FRIENDLI_TOKEN not found in environment variables") if language == "ko": return "단백질 분석 불가: API 토큰이 설정되지 않았습니다" return "Protein analysis unavailable: API token not configured" try: url = "https://api.friendli.ai/dedicated/v1/chat/completions" headers = { "Authorization": f"Bearer {token}", "Content-Type": "application/json" } # Create prompt for protein analysis based on language if language == "ko": prompt = f"""당신은 생물정보학 전문가입니다. 다음 단백질 서열을 분석하고 잠재적인 구조와 기능에 대한 통찰력을 제공해주세요. 단백질 서열: {protein_sequence} 세포 유형: {cell_type} 다음 내용을 포함해주세요: 1. 서열 패턴을 기반으로 예측되는 단백질 패밀리 또는 도메인 2. 잠재적인 구조적 특징 (알파 나선, 베타 시트, 루프) 3. 가능한 생물학적 기능 4. {cell_type} 세포 유형과의 관련성 5. 주목할 만한 서열 모티프나 특성 과학 애플리케이션에 표시하기에 적합하도록 간결하면서도 유익한 응답을 작성해주세요.""" else: prompt = f"""You are a bioinformatics expert. Analyze the following protein sequence and provide insights about its potential structure and function. Protein sequence: {protein_sequence} Cell type context: {cell_type} Please provide: 1. Predicted protein family or domain based on sequence patterns 2. Potential structural features (alpha helices, beta sheets, loops) 3. Possible biological functions 4. Relevance to the {cell_type} cell type 5. Any notable sequence motifs or characteristics Keep the response concise but informative, suitable for display in a scientific application.""" payload = { "model": "dep89a2fld32mcm", "messages": [ { "role": "system", "content": "You are a knowledgeable bioinformatics assistant specializing in protein structure and function prediction." if language == "en" else "당신은 단백질 구조와 기능 예측을 전문으로 하는 지식이 풍부한 생물정보학 어시스턴트입니다." }, { "role": "user", "content": prompt } ], "max_tokens": 1000, "temperature": 0.7, "top_p": 0.8, "stream": False # Disable streaming for simplicity } response = requests.post(url, json=payload, headers=headers, timeout=30) response.raise_for_status() result = response.json() analysis = result['choices'][0]['message']['content'] return analysis except requests.exceptions.RequestException as e: logger.error(f"Failed to analyze protein with LLM: {e}") return f"Protein analysis failed: {str(e)}" except Exception as e: logger.error(f"Unexpected error during protein analysis: {e}") return "Protein analysis unavailable due to an error" class DNADiffusionApp: """Main application class for DNA-Diffusion Gradio interface""" def __init__(self): self.model = None self.model_loading = False self.model_error = None self.protein_analyzer = ProteinAnalyzer() def initialize_model(self): """Initialize the DNA-Diffusion model""" if not MODEL_AVAILABLE: self.model_error = "DNA-Diffusion model module not available. Please install dependencies." return if self.model_loading: return self.model_loading = True try: logger.info("Starting model initialization...") self.model = get_model() logger.info("Model initialized successfully!") self.model_error = None except Exception as e: logger.error(f"Failed to initialize model: {e}") self.model_error = str(e) self.model = None finally: self.model_loading = False @spaces.GPU(duration=60) def generate_sequence(self, cell_type: str, guidance_scale: float = 1.0) -> Tuple[str, Dict[str, Any]]: """Generate a DNA sequence using the model or mock data""" # Use mock generation if model is not available if not MODEL_AVAILABLE or self.model is None: logger.warning("Using mock sequence generation") import random sequence = ''.join(random.choice(['A', 'T', 'C', 'G']) for _ in range(200)) metadata = { 'cell_type': cell_type, 'guidance_scale': guidance_scale, 'generation_time': 2.0, 'mock': True } # Simulate generation time time.sleep(2.0) return sequence, metadata # Use real model try: result = self.model.generate(cell_type, guidance_scale) return result['sequence'], result['metadata'] except Exception as e: logger.error(f"Generation failed: {e}") raise def handle_generation_request(self, cell_type: str, guidance_scale: float, language: str = "en"): """Handle sequence generation request from Gradio""" try: logger.info(f"Generating sequence for cell type: {cell_type}, language: {language}") # Generate DNA sequence sequence, metadata = self.generate_sequence(cell_type, guidance_scale) # Translate to protein logger.info("Translating DNA to protein sequence...") protein_sequence = self.protein_analyzer.dna_to_protein(sequence) # Add protein sequence to metadata metadata['protein_sequence'] = protein_sequence metadata['protein_length'] = len(protein_sequence) # Analyze protein with LLM logger.info("Analyzing protein structure and function...") protein_analysis = self.protein_analyzer.analyze_protein_with_llm( protein_sequence, cell_type, language ) # Add analysis to metadata metadata['protein_analysis'] = protein_analysis logger.info("Generation and analysis complete") return sequence, json.dumps(metadata) except Exception as e: error_msg = str(e) logger.error(f"Generation request failed: {error_msg}") return "", json.dumps({"error": error_msg}) # Create single app instance app = DNADiffusionApp() def create_demo(): """Create the Gradio demo interface""" # CSS to hide backend controls and prevent scrolling css = """ #hidden-controls { display: none !important; } .gradio-container { overflow: hidden; background-color: #000000 !important; } #dna-frame { overflow: hidden; position: relative; } body { background-color: #000000 !important; } """ # JavaScript for handling communication between iframe and Gradio js = """ function() { console.log('Initializing DNA-Diffusion Gradio interface...'); // Set up message listener to receive requests from iframe window.addEventListener('message', function(event) { console.log('Parent received message:', event.data); if (event.data.type === 'generate_request') { console.log('Triggering generation for cell type:', event.data.cellType); console.log('Language:', event.data.language); // Update the hidden cell type input const radioInputs = document.querySelectorAll('#cell-type-input input[type="radio"]'); radioInputs.forEach(input => { if (input.value === event.data.cellType) { input.checked = true; // Trigger change event input.dispatchEvent(new Event('change')); } }); // Update the language input const langInputs = document.querySelectorAll('#language-input input[type="radio"]'); langInputs.forEach(input => { if (input.value === event.data.language) { input.checked = true; input.dispatchEvent(new Event('change')); } }); // Small delay to ensure radio button update is processed setTimeout(() => { document.querySelector('#generate-btn').click(); }, 100); } }); // Function to send sequence to iframe window.sendSequenceToIframe = function(sequence, metadata) { console.log('Sending sequence to iframe:', sequence); const iframe = document.querySelector('#dna-frame iframe'); if (iframe && iframe.contentWindow) { try { const meta = JSON.parse(metadata); if (meta.error) { iframe.contentWindow.postMessage({ type: 'generation_error', error: meta.error }, '*'); } else { iframe.contentWindow.postMessage({ type: 'sequence_generated', sequence: sequence, metadata: meta }, '*'); } } catch (e) { console.error('Failed to parse metadata:', e); // If parsing fails, still send the sequence iframe.contentWindow.postMessage({ type: 'sequence_generated', sequence: sequence, metadata: {} }, '*'); } } else { console.error('Could not find iframe'); } }; } """ with gr.Blocks(css=css, js=js, theme=gr.themes.Base()) as demo: # Hidden controls for backend processing with gr.Column(elem_id="hidden-controls", visible=False): cell_type_input = gr.Radio( ["K562", "GM12878", "HepG2"], value="K562", label="Cell Type", elem_id="cell-type-input" ) language_input = gr.Radio( ["en", "ko"], value="en", label="Language", elem_id="language-input" ) guidance_input = gr.Slider( minimum=1.0, maximum=10.0, value=1.0, step=0.5, label="Guidance Scale", elem_id="guidance-input" ) generate_btn = gr.Button("Generate", elem_id="generate-btn") sequence_output = gr.Textbox(label="Sequence", elem_id="sequence-output") metadata_output = gr.Textbox(label="Metadata", elem_id="metadata-output") # Main interface - the slot machine in an iframe # Escape the HTML content for srcdoc escaped_html = html.escape(SLOT_MACHINE_HTML, quote=True) iframe_html = f'' html_display = gr.HTML( iframe_html, elem_id="dna-frame" ) # Wire up the generation generate_btn.click( fn=app.handle_generation_request, inputs=[cell_type_input, guidance_input, language_input], outputs=[sequence_output, metadata_output] ).then( fn=None, inputs=[sequence_output, metadata_output], outputs=None, js="(seq, meta) => sendSequenceToIframe(seq, meta)" ) # Initialize model on load demo.load( fn=app.initialize_model, inputs=None, outputs=None ) return demo # Launch the app if __name__ == "__main__": demo = create_demo() # Parse any command line arguments import argparse parser = argparse.ArgumentParser(description="DNA-Diffusion Gradio App") parser.add_argument("--share", action="store_true", help="Create a public shareable link") parser.add_argument("--port", type=int, default=7860, help="Port to run the app on") parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the app on") args = parser.parse_args() # For Hugging Face Spaces deployment import os if os.getenv("SPACE_ID"): # Running on Hugging Face Spaces args.host = "0.0.0.0" args.port = 7860 args.share = False inbrowser = False else: inbrowser = True logger.info(f"Starting DNA-Diffusion Gradio app on {args.host}:{args.port}") demo.launch( share=args.share, server_name=args.host, server_port=args.port, inbrowser=inbrowser )