Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,921 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MOUSE Workflow - Visual Workflow Builder with UI Execution
|
3 |
+
@Powered by VIDraft
|
4 |
+
✓ Visual workflow designer with drag-and-drop
|
5 |
+
✓ Import/Export JSON with copy-paste support
|
6 |
+
✓ Auto-generate UI from workflow for end-user execution
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os, json, typing, tempfile, traceback
|
10 |
+
import gradio as gr
|
11 |
+
from gradio_workflowbuilder import WorkflowBuilder
|
12 |
+
|
13 |
+
# Optional imports for LLM APIs
|
14 |
+
try:
|
15 |
+
from openai import OpenAI
|
16 |
+
OPENAI_AVAILABLE = True
|
17 |
+
except ImportError:
|
18 |
+
OPENAI_AVAILABLE = False
|
19 |
+
print("OpenAI library not available. Install with: pip install openai")
|
20 |
+
|
21 |
+
# Anthropic 관련 코드 주석 처리
|
22 |
+
# try:
|
23 |
+
# import anthropic
|
24 |
+
# ANTHROPIC_AVAILABLE = True
|
25 |
+
# except ImportError:
|
26 |
+
# ANTHROPIC_AVAILABLE = False
|
27 |
+
# print("Anthropic library not available. Install with: pip install anthropic")
|
28 |
+
ANTHROPIC_AVAILABLE = False
|
29 |
+
|
30 |
+
try:
|
31 |
+
import requests
|
32 |
+
REQUESTS_AVAILABLE = True
|
33 |
+
except ImportError:
|
34 |
+
REQUESTS_AVAILABLE = False
|
35 |
+
print("Requests library not available. Install with: pip install requests")
|
36 |
+
|
37 |
+
# -------------------------------------------------------------------
|
38 |
+
# 🛠️ 헬퍼 함수들
|
39 |
+
# -------------------------------------------------------------------
|
40 |
+
def export_pretty(data: typing.Dict[str, typing.Any]) -> str:
|
41 |
+
return json.dumps(data, indent=2, ensure_ascii=False) if data else "No workflow to export"
|
42 |
+
|
43 |
+
def export_file(data: typing.Dict[str, typing.Any]) -> typing.Optional[str]:
|
44 |
+
"""워크플로우를 JSON 파일로 내보내기"""
|
45 |
+
if not data:
|
46 |
+
return None
|
47 |
+
fd, path = tempfile.mkstemp(suffix=".json", prefix="workflow_")
|
48 |
+
try:
|
49 |
+
with os.fdopen(fd, "w", encoding="utf-8") as f:
|
50 |
+
json.dump(data, f, ensure_ascii=False, indent=2)
|
51 |
+
return path
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error exporting file: {e}")
|
54 |
+
return None
|
55 |
+
|
56 |
+
def load_json_from_text_or_file(json_text: str, file_obj) -> typing.Tuple[typing.Dict[str, typing.Any], str]:
|
57 |
+
"""텍스트 또는 파일에서 JSON 로드"""
|
58 |
+
# 파일이 있으면 파일 우선
|
59 |
+
if file_obj is not None:
|
60 |
+
try:
|
61 |
+
with open(file_obj.name, "r", encoding="utf-8") as f:
|
62 |
+
json_text = f.read()
|
63 |
+
except Exception as e:
|
64 |
+
return None, f"❌ Error reading file: {str(e)}"
|
65 |
+
|
66 |
+
# JSON 텍스트가 없거나 비어있으면
|
67 |
+
if not json_text or json_text.strip() == "":
|
68 |
+
return None, "No JSON data provided"
|
69 |
+
|
70 |
+
try:
|
71 |
+
# JSON 파싱
|
72 |
+
data = json.loads(json_text.strip())
|
73 |
+
|
74 |
+
# 데이터 검증
|
75 |
+
if not isinstance(data, dict):
|
76 |
+
return None, "Invalid format: not a dictionary"
|
77 |
+
|
78 |
+
# 필수 필드 확인
|
79 |
+
if 'nodes' not in data:
|
80 |
+
data['nodes'] = []
|
81 |
+
if 'edges' not in data:
|
82 |
+
data['edges'] = []
|
83 |
+
|
84 |
+
nodes_count = len(data.get('nodes', []))
|
85 |
+
edges_count = len(data.get('edges', []))
|
86 |
+
|
87 |
+
return data, f"✅ Loaded: {nodes_count} nodes, {edges_count} edges"
|
88 |
+
|
89 |
+
except json.JSONDecodeError as e:
|
90 |
+
return None, f"❌ JSON parsing error: {str(e)}"
|
91 |
+
except Exception as e:
|
92 |
+
return None, f"❌ Error: {str(e)}"
|
93 |
+
|
94 |
+
def create_sample_workflow(example_type="basic"):
|
95 |
+
"""샘플 워크플로우 생성"""
|
96 |
+
|
97 |
+
if example_type == "basic":
|
98 |
+
# 기본 예제: 간단한 Q&A
|
99 |
+
return {
|
100 |
+
"nodes": [
|
101 |
+
{
|
102 |
+
"id": "input_1",
|
103 |
+
"type": "ChatInput",
|
104 |
+
"position": {"x": 100, "y": 200},
|
105 |
+
"data": {
|
106 |
+
"label": "User Question",
|
107 |
+
"template": {
|
108 |
+
"input_value": {"value": "What is the capital of Korea?"}
|
109 |
+
}
|
110 |
+
}
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"id": "llm_1",
|
114 |
+
"type": "llmNode",
|
115 |
+
"position": {"x": 400, "y": 200},
|
116 |
+
"data": {
|
117 |
+
"label": "AI Processing",
|
118 |
+
"template": {
|
119 |
+
"provider": {"value": "OpenAI"},
|
120 |
+
"model": {"value": "gpt-4.1-mini"},
|
121 |
+
"temperature": {"value": 0.7},
|
122 |
+
"system_prompt": {"value": "You are a helpful assistant."}
|
123 |
+
}
|
124 |
+
}
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"id": "output_1",
|
128 |
+
"type": "ChatOutput",
|
129 |
+
"position": {"x": 700, "y": 200},
|
130 |
+
"data": {"label": "Answer"}
|
131 |
+
}
|
132 |
+
],
|
133 |
+
"edges": [
|
134 |
+
{"id": "e1", "source": "input_1", "target": "llm_1"},
|
135 |
+
{"id": "e2", "source": "llm_1", "target": "output_1"}
|
136 |
+
]
|
137 |
+
}
|
138 |
+
|
139 |
+
elif example_type == "vidraft":
|
140 |
+
# VIDraft 예제
|
141 |
+
return {
|
142 |
+
"nodes": [
|
143 |
+
{
|
144 |
+
"id": "input_1",
|
145 |
+
"type": "ChatInput",
|
146 |
+
"position": {"x": 100, "y": 200},
|
147 |
+
"data": {
|
148 |
+
"label": "User Input",
|
149 |
+
"template": {
|
150 |
+
"input_value": {"value": "AI와 머신러닝의 차이점을 설명해주세요."}
|
151 |
+
}
|
152 |
+
}
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"id": "llm_1",
|
156 |
+
"type": "llmNode",
|
157 |
+
"position": {"x": 400, "y": 200},
|
158 |
+
"data": {
|
159 |
+
"label": "VIDraft AI (Gemma)",
|
160 |
+
"template": {
|
161 |
+
"provider": {"value": "VIDraft"},
|
162 |
+
"model": {"value": "Gemma-3-r1984-27B"},
|
163 |
+
"temperature": {"value": 0.8},
|
164 |
+
"system_prompt": {"value": "당신은 전문적이고 친절한 AI 교육자입니다. 복잡한 개념을 쉽게 설명해주세요."}
|
165 |
+
}
|
166 |
+
}
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"id": "output_1",
|
170 |
+
"type": "ChatOutput",
|
171 |
+
"position": {"x": 700, "y": 200},
|
172 |
+
"data": {"label": "AI Explanation"}
|
173 |
+
}
|
174 |
+
],
|
175 |
+
"edges": [
|
176 |
+
{"id": "e1", "source": "input_1", "target": "llm_1"},
|
177 |
+
{"id": "e2", "source": "llm_1", "target": "output_1"}
|
178 |
+
]
|
179 |
+
}
|
180 |
+
|
181 |
+
elif example_type == "multi_input":
|
182 |
+
# 다중 입력 예제
|
183 |
+
return {
|
184 |
+
"nodes": [
|
185 |
+
{
|
186 |
+
"id": "name_input",
|
187 |
+
"type": "textInput",
|
188 |
+
"position": {"x": 100, "y": 100},
|
189 |
+
"data": {
|
190 |
+
"label": "Your Name",
|
191 |
+
"template": {
|
192 |
+
"input_value": {"value": "John"}
|
193 |
+
}
|
194 |
+
}
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"id": "topic_input",
|
198 |
+
"type": "textInput",
|
199 |
+
"position": {"x": 100, "y": 250},
|
200 |
+
"data": {
|
201 |
+
"label": "Topic",
|
202 |
+
"template": {
|
203 |
+
"input_value": {"value": "Python programming"}
|
204 |
+
}
|
205 |
+
}
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"id": "level_input",
|
209 |
+
"type": "textInput",
|
210 |
+
"position": {"x": 100, "y": 400},
|
211 |
+
"data": {
|
212 |
+
"label": "Skill Level",
|
213 |
+
"template": {
|
214 |
+
"input_value": {"value": "beginner"}
|
215 |
+
}
|
216 |
+
}
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"id": "combiner",
|
220 |
+
"type": "textNode",
|
221 |
+
"position": {"x": 350, "y": 250},
|
222 |
+
"data": {
|
223 |
+
"label": "Combine Inputs",
|
224 |
+
"template": {
|
225 |
+
"text": {"value": "Create a personalized learning plan"}
|
226 |
+
}
|
227 |
+
}
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"id": "llm_1",
|
231 |
+
"type": "llmNode",
|
232 |
+
"position": {"x": 600, "y": 250},
|
233 |
+
"data": {
|
234 |
+
"label": "Generate Learning Plan",
|
235 |
+
"template": {
|
236 |
+
"provider": {"value": "OpenAI"},
|
237 |
+
"model": {"value": "gpt-4.1-mini"},
|
238 |
+
"temperature": {"value": 0.7},
|
239 |
+
"system_prompt": {"value": "You are an expert educational consultant. Create personalized learning plans based on the user's name, topic of interest, and skill level."}
|
240 |
+
}
|
241 |
+
}
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"id": "output_1",
|
245 |
+
"type": "ChatOutput",
|
246 |
+
"position": {"x": 900, "y": 250},
|
247 |
+
"data": {"label": "Your Learning Plan"}
|
248 |
+
}
|
249 |
+
],
|
250 |
+
"edges": [
|
251 |
+
{"id": "e1", "source": "name_input", "target": "combiner"},
|
252 |
+
{"id": "e2", "source": "topic_input", "target": "combiner"},
|
253 |
+
{"id": "e3", "source": "level_input", "target": "combiner"},
|
254 |
+
{"id": "e4", "source": "combiner", "target": "llm_1"},
|
255 |
+
{"id": "e5", "source": "llm_1", "target": "output_1"}
|
256 |
+
]
|
257 |
+
}
|
258 |
+
|
259 |
+
elif example_type == "chain":
|
260 |
+
# 체인 처리 예제
|
261 |
+
return {
|
262 |
+
"nodes": [
|
263 |
+
{
|
264 |
+
"id": "input_1",
|
265 |
+
"type": "ChatInput",
|
266 |
+
"position": {"x": 50, "y": 200},
|
267 |
+
"data": {
|
268 |
+
"label": "Original Text",
|
269 |
+
"template": {
|
270 |
+
"input_value": {"value": "The quick brown fox jumps over the lazy dog."}
|
271 |
+
}
|
272 |
+
}
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"id": "translator",
|
276 |
+
"type": "llmNode",
|
277 |
+
"position": {"x": 300, "y": 200},
|
278 |
+
"data": {
|
279 |
+
"label": "Translate to Korean",
|
280 |
+
"template": {
|
281 |
+
"provider": {"value": "VIDraft"},
|
282 |
+
"model": {"value": "Gemma-3-r1984-27B"},
|
283 |
+
"temperature": {"value": 0.3},
|
284 |
+
"system_prompt": {"value": "You are a professional translator. Translate the given English text to Korean accurately."}
|
285 |
+
}
|
286 |
+
}
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"id": "analyzer",
|
290 |
+
"type": "llmNode",
|
291 |
+
"position": {"x": 600, "y": 200},
|
292 |
+
"data": {
|
293 |
+
"label": "Analyze Translation",
|
294 |
+
"template": {
|
295 |
+
"provider": {"value": "OpenAI"},
|
296 |
+
"model": {"value": "gpt-4.1-mini"},
|
297 |
+
"temperature": {"value": 0.5},
|
298 |
+
"system_prompt": {"value": "You are a linguistic expert. Analyze the Korean translation and explain its nuances and cultural context."}
|
299 |
+
}
|
300 |
+
}
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"id": "output_translation",
|
304 |
+
"type": "ChatOutput",
|
305 |
+
"position": {"x": 450, "y": 350},
|
306 |
+
"data": {"label": "Korean Translation"}
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"id": "output_analysis",
|
310 |
+
"type": "ChatOutput",
|
311 |
+
"position": {"x": 900, "y": 200},
|
312 |
+
"data": {"label": "Translation Analysis"}
|
313 |
+
}
|
314 |
+
],
|
315 |
+
"edges": [
|
316 |
+
{"id": "e1", "source": "input_1", "target": "translator"},
|
317 |
+
{"id": "e2", "source": "translator", "target": "analyzer"},
|
318 |
+
{"id": "e3", "source": "translator", "target": "output_translation"},
|
319 |
+
{"id": "e4", "source": "analyzer", "target": "output_analysis"}
|
320 |
+
]
|
321 |
+
}
|
322 |
+
|
323 |
+
# 기본값은 basic
|
324 |
+
return create_sample_workflow("basic")
|
325 |
+
|
326 |
+
# UI 실행을 위한 실제 워크플로우 실행 함수
|
327 |
+
def execute_workflow_simple(workflow_data: dict, input_values: dict) -> dict:
|
328 |
+
"""워크플로우 실제 실행"""
|
329 |
+
import traceback
|
330 |
+
|
331 |
+
# API 키 확인
|
332 |
+
vidraft_token = os.getenv("FRIENDLI_TOKEN") # VIDraft/Friendli token
|
333 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
334 |
+
# anthropic_key = os.getenv("ANTHROPIC_API_KEY") # 주석 처리
|
335 |
+
|
336 |
+
# OpenAI 라이브러리 확인
|
337 |
+
try:
|
338 |
+
from openai import OpenAI
|
339 |
+
openai_available = True
|
340 |
+
except ImportError:
|
341 |
+
openai_available = False
|
342 |
+
print("OpenAI library not available")
|
343 |
+
|
344 |
+
# Anthropic 라이브러리 확인 - 주석 처리
|
345 |
+
# try:
|
346 |
+
# import anthropic
|
347 |
+
# anthropic_available = True
|
348 |
+
# except ImportError:
|
349 |
+
# anthropic_available = False
|
350 |
+
# print("Anthropic library not available")
|
351 |
+
anthropic_available = False
|
352 |
+
|
353 |
+
results = {}
|
354 |
+
nodes = workflow_data.get("nodes", [])
|
355 |
+
edges = workflow_data.get("edges", [])
|
356 |
+
|
357 |
+
# 노드를 순서대로 처리
|
358 |
+
for node in nodes:
|
359 |
+
node_id = node.get("id")
|
360 |
+
node_type = node.get("type", "")
|
361 |
+
node_data = node.get("data", {})
|
362 |
+
|
363 |
+
try:
|
364 |
+
elif node_type in ["ChatInput", "textInput", "Input"]:
|
365 |
+
# UI에서 제공된 입력값 사용
|
366 |
+
if node_id in input_values:
|
367 |
+
results[node_id] = input_values[node_id]
|
368 |
+
else:
|
369 |
+
# 기본값 사용
|
370 |
+
template = node_data.get("template", {})
|
371 |
+
default_value = template.get("input_value", {}).get("value", "")
|
372 |
+
results[node_id] = default_value
|
373 |
+
|
374 |
+
elif node_type == "textNode":
|
375 |
+
# 텍스트 노드는 연결된 모든 입력을 결합
|
376 |
+
template = node_data.get("template", {})
|
377 |
+
base_text = template.get("text", {}).get("value", "")
|
378 |
+
|
379 |
+
# 연결된 입력들 수집
|
380 |
+
connected_inputs = []
|
381 |
+
for edge in edges:
|
382 |
+
if edge.get("target") == node_id:
|
383 |
+
source_id = edge.get("source")
|
384 |
+
if source_id in results:
|
385 |
+
connected_inputs.append(f"{source_id}: {results[source_id]}")
|
386 |
+
|
387 |
+
# 결합된 텍스트 생성
|
388 |
+
if connected_inputs:
|
389 |
+
combined_text = f"{base_text}\n\nInputs:\n" + "\n".join(connected_inputs)
|
390 |
+
results[node_id] = combined_text
|
391 |
+
else:
|
392 |
+
results[node_id] = base_text
|
393 |
+
|
394 |
+
elif node_type in ["llmNode", "OpenAIModel", "ChatModel"]:
|
395 |
+
# LLM 노드 처리
|
396 |
+
template = node_data.get("template", {})
|
397 |
+
|
398 |
+
# 프로바이더 정보 추출 - VIDraft 또는 OpenAI만 허용
|
399 |
+
provider_info = template.get("provider", {})
|
400 |
+
provider = provider_info.get("value", "OpenAI") if isinstance(provider_info, dict) else "OpenAI"
|
401 |
+
|
402 |
+
# provider가 VIDraft 또는 OpenAI가 아닌 경우 OpenAI로 기본 설정
|
403 |
+
if provider not in ["VIDraft", "OpenAI"]:
|
404 |
+
provider = "OpenAI"
|
405 |
+
|
406 |
+
# 모델 정보 추출
|
407 |
+
if provider == "OpenAI":
|
408 |
+
# OpenAI는 gpt-4.1-mini로 고정
|
409 |
+
model = "gpt-4.1-mini"
|
410 |
+
elif provider == "VIDraft":
|
411 |
+
# VIDraft는 Gemma-3-r1984-27B로 고정
|
412 |
+
model = "Gemma-3-r1984-27B"
|
413 |
+
else:
|
414 |
+
model = "gpt-4.1-mini" # 기본값
|
415 |
+
|
416 |
+
# 온도 정보 추출
|
417 |
+
temp_info = template.get("temperature", {})
|
418 |
+
temperature = temp_info.get("value", 0.7) if isinstance(temp_info, dict) else 0.7
|
419 |
+
|
420 |
+
# 시스템 프롬프트 추출
|
421 |
+
prompt_info = template.get("system_prompt", {})
|
422 |
+
system_prompt = prompt_info.get("value", "") if isinstance(prompt_info, dict) else ""
|
423 |
+
|
424 |
+
# 입력 텍스트 찾기
|
425 |
+
input_text = ""
|
426 |
+
for edge in edges:
|
427 |
+
if edge.get("target") == node_id:
|
428 |
+
source_id = edge.get("source")
|
429 |
+
if source_id in results:
|
430 |
+
input_text = results[source_id]
|
431 |
+
break
|
432 |
+
|
433 |
+
# 실제 API 호출
|
434 |
+
if provider == "OpenAI" and openai_key and openai_available:
|
435 |
+
try:
|
436 |
+
client = OpenAI(api_key=openai_key)
|
437 |
+
|
438 |
+
messages = []
|
439 |
+
if system_prompt:
|
440 |
+
messages.append({"role": "system", "content": system_prompt})
|
441 |
+
messages.append({"role": "user", "content": input_text})
|
442 |
+
|
443 |
+
response = client.chat.completions.create(
|
444 |
+
model="gpt-4.1-mini", # 고정된 모델명
|
445 |
+
messages=messages,
|
446 |
+
temperature=temperature,
|
447 |
+
max_tokens=1000
|
448 |
+
)
|
449 |
+
|
450 |
+
results[node_id] = response.choices[0].message.content
|
451 |
+
|
452 |
+
except Exception as e:
|
453 |
+
results[node_id] = f"[OpenAI Error: {str(e)}]"
|
454 |
+
|
455 |
+
# Anthropic 관련 코드 주석 처리
|
456 |
+
# elif provider == "Anthropic" and anthropic_key and anthropic_available:
|
457 |
+
# try:
|
458 |
+
# client = anthropic.Anthropic(api_key=anthropic_key)
|
459 |
+
#
|
460 |
+
# message = client.messages.create(
|
461 |
+
# model="claude-3-haiku-20240307",
|
462 |
+
# max_tokens=1000,
|
463 |
+
# temperature=temperature,
|
464 |
+
# system=system_prompt if system_prompt else None,
|
465 |
+
# messages=[{"role": "user", "content": input_text}]
|
466 |
+
# )
|
467 |
+
#
|
468 |
+
# results[node_id] = message.content[0].text
|
469 |
+
#
|
470 |
+
# except Exception as e:
|
471 |
+
# results[node_id] = f"[Anthropic Error: {str(e)}]"
|
472 |
+
|
473 |
+
elif provider == "VIDraft" and vidraft_token:
|
474 |
+
try:
|
475 |
+
import requests
|
476 |
+
|
477 |
+
headers = {
|
478 |
+
"Authorization": f"Bearer {vidraft_token}",
|
479 |
+
"Content-Type": "application/json"
|
480 |
+
}
|
481 |
+
|
482 |
+
# 메시지 구성
|
483 |
+
messages = []
|
484 |
+
if system_prompt:
|
485 |
+
messages.append({"role": "system", "content": system_prompt})
|
486 |
+
messages.append({"role": "user", "content": input_text})
|
487 |
+
|
488 |
+
payload = {
|
489 |
+
"model": "dep89a2fld32mcm", # VIDraft 모델 ID
|
490 |
+
"messages": messages,
|
491 |
+
"max_tokens": 16384,
|
492 |
+
"temperature": temperature,
|
493 |
+
"top_p": 0.8,
|
494 |
+
"stream": False # 동기 실행을 위해 False로 설정
|
495 |
+
}
|
496 |
+
|
497 |
+
# VIDraft API endpoint
|
498 |
+
response = requests.post(
|
499 |
+
"https://api.friendli.ai/dedicated/v1/chat/completions",
|
500 |
+
headers=headers,
|
501 |
+
json=payload,
|
502 |
+
timeout=30
|
503 |
+
)
|
504 |
+
|
505 |
+
if response.status_code == 200:
|
506 |
+
response_json = response.json()
|
507 |
+
results[node_id] = response_json["choices"][0]["message"]["content"]
|
508 |
+
else:
|
509 |
+
results[node_id] = f"[VIDraft API Error: {response.status_code} - {response.text}]"
|
510 |
+
|
511 |
+
except Exception as e:
|
512 |
+
results[node_id] = f"[VIDraft Error: {str(e)}]"
|
513 |
+
|
514 |
+
else:
|
515 |
+
# API 키가 없는 경우 시뮬레이션
|
516 |
+
results[node_id] = f"[Simulated {provider} Response to: {input_text[:50]}...]"
|
517 |
+
|
518 |
+
elif node_type in ["ChatOutput", "textOutput", "Output"]:
|
519 |
+
# 출력 노드는 연결된 노드의 결과를 가져옴
|
520 |
+
for edge in edges:
|
521 |
+
if edge.get("target") == node_id:
|
522 |
+
source_id = edge.get("source")
|
523 |
+
if source_id in results:
|
524 |
+
results[node_id] = results[source_id]
|
525 |
+
break
|
526 |
+
|
527 |
+
except Exception as e:
|
528 |
+
results[node_id] = f"[Node Error: {str(e)}]"
|
529 |
+
print(f"Error processing node {node_id}: {traceback.format_exc()}")
|
530 |
+
|
531 |
+
return results
|
532 |
+
|
533 |
+
# -------------------------------------------------------------------
|
534 |
+
# 🎨 CSS
|
535 |
+
# -------------------------------------------------------------------
|
536 |
+
CSS = """
|
537 |
+
.main-container{max-width:1600px;margin:0 auto;}
|
538 |
+
.workflow-section{margin-bottom:2rem;min-height:500px;}
|
539 |
+
.button-row{display:flex;gap:1rem;justify-content:center;margin:1rem 0;}
|
540 |
+
.status-box{
|
541 |
+
padding:10px;border-radius:5px;margin-top:10px;
|
542 |
+
background:#f0f9ff;border:1px solid #3b82f6;color:#1e40af;
|
543 |
+
}
|
544 |
+
.component-description{
|
545 |
+
padding:24px;background:linear-gradient(135deg,#f8fafc 0%,#e2e8f0 100%);
|
546 |
+
border-left:4px solid #3b82f6;border-radius:12px;
|
547 |
+
box-shadow:0 2px 8px rgba(0,0,0,.05);margin:16px 0;
|
548 |
+
}
|
549 |
+
.workflow-container{position:relative;}
|
550 |
+
.ui-execution-section{
|
551 |
+
background:linear-gradient(135deg,#f0fdf4 0%,#dcfce7 100%);
|
552 |
+
padding:24px;border-radius:12px;margin:24px 0;
|
553 |
+
border:1px solid #86efac;
|
554 |
+
}
|
555 |
+
.powered-by{
|
556 |
+
text-align:center;color:#64748b;font-size:14px;
|
557 |
+
margin-top:8px;font-style:italic;
|
558 |
+
}
|
559 |
+
.sample-buttons{
|
560 |
+
display:grid;grid-template-columns:1fr 1fr;gap:0.5rem;
|
561 |
+
margin-top:0.5rem;
|
562 |
+
}
|
563 |
+
"""
|
564 |
+
|
565 |
+
# -------------------------------------------------------------------
|
566 |
+
# 🖥️ Gradio 앱
|
567 |
+
# -------------------------------------------------------------------
|
568 |
+
with gr.Blocks(title="🐭 MOUSE Workflow", theme=gr.themes.Soft(), css=CSS) as demo:
|
569 |
+
|
570 |
+
with gr.Column(elem_classes=["main-container"]):
|
571 |
+
gr.Markdown("# 🐭 MOUSE Workflow")
|
572 |
+
gr.Markdown("**Visual Workflow Builder with Interactive UI Execution**")
|
573 |
+
gr.HTML('<p class="powered-by">@Powered by VIDraft & Huggingface gradio</p>')
|
574 |
+
|
575 |
+
gr.HTML(
|
576 |
+
"""
|
577 |
+
<div class="component-description">
|
578 |
+
<p style="font-size:16px;margin:0;">Build sophisticated workflows visually • Import/Export JSON • Generate interactive UI for end-users</p>
|
579 |
+
</div>
|
580 |
+
"""
|
581 |
+
)
|
582 |
+
|
583 |
+
# API Status Display
|
584 |
+
with gr.Accordion("🔌 API Status", open=False):
|
585 |
+
gr.Markdown(f"""
|
586 |
+
**Available APIs:**
|
587 |
+
- FRIENDLI_TOKEN (VIDraft): {'✅ Connected' if os.getenv("FRIENDLI_TOKEN") else '❌ Not found'}
|
588 |
+
- OPENAI_API_KEY: {'✅ Connected' if os.getenv("OPENAI_API_KEY") else '❌ Not found'}
|
589 |
+
|
590 |
+
**Libraries:**
|
591 |
+
- OpenAI: {'✅ Installed' if OPENAI_AVAILABLE else '❌ Not installed'}
|
592 |
+
- Requests: {'✅ Installed' if REQUESTS_AVAILABLE else '❌ Not installed'}
|
593 |
+
|
594 |
+
**Available Models:**
|
595 |
+
- OpenAI: gpt-4.1-mini (fixed)
|
596 |
+
- VIDraft: Gemma-3-r1984-27B (model ID: dep89a2fld32mcm)
|
597 |
+
|
598 |
+
**Sample Workflows:**
|
599 |
+
- Basic Q&A: Simple question-answer flow
|
600 |
+
- VIDraft: Korean language example with Gemma model
|
601 |
+
- Multi-Input: Combine multiple inputs for personalized output
|
602 |
+
- Chain: Sequential processing with multiple outputs
|
603 |
+
|
604 |
+
*Note: Without API keys, the UI will simulate AI responses.*
|
605 |
+
""")
|
606 |
+
|
607 |
+
# State for storing workflow data
|
608 |
+
loaded_data = gr.State(None)
|
609 |
+
trigger_update = gr.State(False)
|
610 |
+
|
611 |
+
# ─── Dynamic Workflow Container ───
|
612 |
+
with gr.Column(elem_classes=["workflow-container"]):
|
613 |
+
@gr.render(inputs=[loaded_data, trigger_update])
|
614 |
+
def render_workflow(data, trigger):
|
615 |
+
"""동적으로 WorkflowBuilder 렌더링"""
|
616 |
+
workflow_value = data if data else {"nodes": [], "edges": []}
|
617 |
+
|
618 |
+
return WorkflowBuilder(
|
619 |
+
label="🎨 Visual Workflow Designer",
|
620 |
+
info="Drag from sidebar → Connect nodes → Edit properties",
|
621 |
+
value=workflow_value,
|
622 |
+
elem_id="main_workflow"
|
623 |
+
)
|
624 |
+
|
625 |
+
# ─── Import Section ───
|
626 |
+
with gr.Accordion("📥 Import Workflow", open=True):
|
627 |
+
with gr.Row():
|
628 |
+
with gr.Column(scale=2):
|
629 |
+
import_json_text = gr.Code(
|
630 |
+
language="json",
|
631 |
+
label="Paste JSON here",
|
632 |
+
lines=8,
|
633 |
+
value='{\n "nodes": [],\n "edges": []\n}'
|
634 |
+
)
|
635 |
+
with gr.Column(scale=1):
|
636 |
+
file_upload = gr.File(
|
637 |
+
label="Or upload JSON file",
|
638 |
+
file_types=[".json"],
|
639 |
+
type="filepath"
|
640 |
+
)
|
641 |
+
btn_load = gr.Button("📥 Load Workflow", variant="primary", size="lg")
|
642 |
+
|
643 |
+
# Sample buttons
|
644 |
+
gr.Markdown("**Sample Workflows:**")
|
645 |
+
with gr.Row():
|
646 |
+
btn_sample_basic = gr.Button("🎯 Basic Q&A", variant="secondary", scale=1)
|
647 |
+
btn_sample_vidraft = gr.Button("🤖 VIDraft", variant="secondary", scale=1)
|
648 |
+
with gr.Row():
|
649 |
+
btn_sample_multi = gr.Button("📝 Multi-Input", variant="secondary", scale=1)
|
650 |
+
btn_sample_chain = gr.Button("🔗 Chain", variant="secondary", scale=1)
|
651 |
+
|
652 |
+
# Status
|
653 |
+
status_text = gr.Textbox(
|
654 |
+
label="Status",
|
655 |
+
value="Ready",
|
656 |
+
elem_classes=["status-box"],
|
657 |
+
interactive=False
|
658 |
+
)
|
659 |
+
|
660 |
+
# ─── Export Section ───
|
661 |
+
gr.Markdown("## 💾 Export")
|
662 |
+
|
663 |
+
with gr.Row():
|
664 |
+
with gr.Column(scale=3):
|
665 |
+
export_preview = gr.Code(
|
666 |
+
language="json",
|
667 |
+
label="Current Workflow JSON",
|
668 |
+
lines=8
|
669 |
+
)
|
670 |
+
with gr.Column(scale=1):
|
671 |
+
btn_preview = gr.Button("👁️ Preview JSON", size="lg")
|
672 |
+
btn_download = gr.DownloadButton("💾 Download JSON", size="lg")
|
673 |
+
|
674 |
+
# ─── UI Execution Section ───
|
675 |
+
with gr.Column(elem_classes=["ui-execution-section"]):
|
676 |
+
gr.Markdown("## 🚀 UI Execution")
|
677 |
+
gr.Markdown("Generate an interactive UI from your workflow for end-users")
|
678 |
+
|
679 |
+
btn_execute_ui = gr.Button("▶️ Generate & Run UI", variant="primary", size="lg")
|
680 |
+
|
681 |
+
# UI execution state
|
682 |
+
ui_workflow_data = gr.State(None)
|
683 |
+
|
684 |
+
# Dynamic UI container
|
685 |
+
@gr.render(inputs=[ui_workflow_data])
|
686 |
+
def render_execution_ui(workflow_data):
|
687 |
+
if not workflow_data or not workflow_data.get("nodes"):
|
688 |
+
gr.Markdown("*Load a workflow first, then click 'Generate & Run UI'*")
|
689 |
+
return
|
690 |
+
|
691 |
+
gr.Markdown("### 📋 Generated UI")
|
692 |
+
|
693 |
+
# Extract input and output nodes
|
694 |
+
input_nodes = []
|
695 |
+
output_nodes = []
|
696 |
+
|
697 |
+
for node in workflow_data.get("nodes", []):
|
698 |
+
node_type = node.get("type", "")
|
699 |
+
if node_type in ["ChatInput", "textInput", "Input", "numberInput"]:
|
700 |
+
input_nodes.append(node)
|
701 |
+
elif node_type in ["ChatOutput", "textOutput", "Output"]:
|
702 |
+
output_nodes.append(node)
|
703 |
+
elif node_type == "textNode":
|
704 |
+
# textNode는 중간 처리 노드로, UI에는 표시하지 않음
|
705 |
+
pass
|
706 |
+
|
707 |
+
# Create input components
|
708 |
+
input_components = {}
|
709 |
+
|
710 |
+
if input_nodes:
|
711 |
+
gr.Markdown("#### 📥 Inputs")
|
712 |
+
for node in input_nodes:
|
713 |
+
node_id = node.get("id")
|
714 |
+
label = node.get("data", {}).get("label", node_id)
|
715 |
+
node_type = node.get("type")
|
716 |
+
|
717 |
+
# Get default value
|
718 |
+
template = node.get("data", {}).get("template", {})
|
719 |
+
default_value = template.get("input_value", {}).get("value", "")
|
720 |
+
|
721 |
+
if node_type == "numberInput":
|
722 |
+
input_components[node_id] = gr.Number(
|
723 |
+
label=label,
|
724 |
+
value=float(default_value) if default_value else 0
|
725 |
+
)
|
726 |
+
else:
|
727 |
+
input_components[node_id] = gr.Textbox(
|
728 |
+
label=label,
|
729 |
+
value=default_value,
|
730 |
+
lines=2,
|
731 |
+
placeholder="Enter your input..."
|
732 |
+
)
|
733 |
+
|
734 |
+
# Execute button
|
735 |
+
execute_btn = gr.Button("🎯 Execute", variant="primary")
|
736 |
+
|
737 |
+
# Create output components
|
738 |
+
output_components = {}
|
739 |
+
|
740 |
+
if output_nodes:
|
741 |
+
gr.Markdown("#### 📤 Outputs")
|
742 |
+
for node in output_nodes:
|
743 |
+
node_id = node.get("id")
|
744 |
+
label = node.get("data", {}).get("label", node_id)
|
745 |
+
|
746 |
+
output_components[node_id] = gr.Textbox(
|
747 |
+
label=label,
|
748 |
+
interactive=False,
|
749 |
+
lines=3
|
750 |
+
)
|
751 |
+
|
752 |
+
# Execution log
|
753 |
+
gr.Markdown("#### 📊 Execution Log")
|
754 |
+
log_output = gr.Textbox(
|
755 |
+
label="Log",
|
756 |
+
interactive=False,
|
757 |
+
lines=5
|
758 |
+
)
|
759 |
+
|
760 |
+
# Define execution handler
|
761 |
+
def execute_ui_workflow(*input_values):
|
762 |
+
# Create input dictionary
|
763 |
+
inputs_dict = {}
|
764 |
+
input_keys = list(input_components.keys())
|
765 |
+
for i, key in enumerate(input_keys):
|
766 |
+
if i < len(input_values):
|
767 |
+
inputs_dict[key] = input_values[i]
|
768 |
+
|
769 |
+
# Check API status
|
770 |
+
log = "=== Workflow Execution Started ===\n"
|
771 |
+
log += f"Inputs provided: {len(inputs_dict)}\n"
|
772 |
+
|
773 |
+
# API 상태 확인
|
774 |
+
vidraft_token = os.getenv("FRIENDLI_TOKEN")
|
775 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
776 |
+
|
777 |
+
log += "\nAPI Status:\n"
|
778 |
+
log += f"- FRIENDLI_TOKEN (VIDraft): {'✅ Found' if vidraft_token else '❌ Not found'}\n"
|
779 |
+
log += f"- OPENAI_API_KEY: {'✅ Found' if openai_key else '❌ Not found'}\n"
|
780 |
+
|
781 |
+
if not vidraft_token and not openai_key:
|
782 |
+
log += "\n⚠️ No API keys found. Results will be simulated.\n"
|
783 |
+
log += "To get real AI responses, set API keys in environment variables.\n"
|
784 |
+
|
785 |
+
log += "\n--- Processing Nodes ---\n"
|
786 |
+
|
787 |
+
try:
|
788 |
+
results = execute_workflow_simple(workflow_data, inputs_dict)
|
789 |
+
|
790 |
+
# Prepare outputs
|
791 |
+
output_values = []
|
792 |
+
for node_id in output_components.keys():
|
793 |
+
value = results.get(node_id, "No output")
|
794 |
+
output_values.append(value)
|
795 |
+
|
796 |
+
# Log 길이 제한
|
797 |
+
display_value = value[:100] + "..." if len(str(value)) > 100 else value
|
798 |
+
log += f"\nOutput [{node_id}]: {display_value}\n"
|
799 |
+
|
800 |
+
log += "\n=== Execution Completed Successfully! ===\n"
|
801 |
+
output_values.append(log)
|
802 |
+
|
803 |
+
return output_values
|
804 |
+
|
805 |
+
except Exception as e:
|
806 |
+
error_msg = f"❌ Error: {str(e)}"
|
807 |
+
log += f"\n{error_msg}\n"
|
808 |
+
log += "=== Execution Failed ===\n"
|
809 |
+
return [error_msg] * len(output_components) + [log]
|
810 |
+
|
811 |
+
# Connect execution
|
812 |
+
all_inputs = list(input_components.values())
|
813 |
+
all_outputs = list(output_components.values()) + [log_output]
|
814 |
+
|
815 |
+
execute_btn.click(
|
816 |
+
fn=execute_ui_workflow,
|
817 |
+
inputs=all_inputs,
|
818 |
+
outputs=all_outputs
|
819 |
+
)
|
820 |
+
|
821 |
+
# ─── Event Handlers ───
|
822 |
+
|
823 |
+
# Load workflow (from text or file)
|
824 |
+
def load_workflow(json_text, file_obj):
|
825 |
+
data, status = load_json_from_text_or_file(json_text, file_obj)
|
826 |
+
if data:
|
827 |
+
return data, status, json_text if not file_obj else export_pretty(data)
|
828 |
+
else:
|
829 |
+
return None, status, gr.update()
|
830 |
+
|
831 |
+
btn_load.click(
|
832 |
+
fn=load_workflow,
|
833 |
+
inputs=[import_json_text, file_upload],
|
834 |
+
outputs=[loaded_data, status_text, import_json_text]
|
835 |
+
).then(
|
836 |
+
fn=lambda current_trigger: not current_trigger,
|
837 |
+
inputs=trigger_update,
|
838 |
+
outputs=trigger_update
|
839 |
+
)
|
840 |
+
|
841 |
+
# Auto-load when file is uploaded
|
842 |
+
file_upload.change(
|
843 |
+
fn=load_workflow,
|
844 |
+
inputs=[import_json_text, file_upload],
|
845 |
+
outputs=[loaded_data, status_text, import_json_text]
|
846 |
+
).then(
|
847 |
+
fn=lambda current_trigger: not current_trigger,
|
848 |
+
inputs=trigger_update,
|
849 |
+
outputs=trigger_update
|
850 |
+
)
|
851 |
+
|
852 |
+
# Load samples
|
853 |
+
btn_sample_basic.click(
|
854 |
+
fn=lambda: (create_sample_workflow("basic"), "✅ Basic Q&A sample loaded", export_pretty(create_sample_workflow("basic"))),
|
855 |
+
outputs=[loaded_data, status_text, import_json_text]
|
856 |
+
).then(
|
857 |
+
fn=lambda current_trigger: not current_trigger,
|
858 |
+
inputs=trigger_update,
|
859 |
+
outputs=trigger_update
|
860 |
+
)
|
861 |
+
|
862 |
+
btn_sample_vidraft.click(
|
863 |
+
fn=lambda: (create_sample_workflow("vidraft"), "✅ VIDraft sample loaded", export_pretty(create_sample_workflow("vidraft"))),
|
864 |
+
outputs=[loaded_data, status_text, import_json_text]
|
865 |
+
).then(
|
866 |
+
fn=lambda current_trigger: not current_trigger,
|
867 |
+
inputs=trigger_update,
|
868 |
+
outputs=trigger_update
|
869 |
+
)
|
870 |
+
|
871 |
+
btn_sample_multi.click(
|
872 |
+
fn=lambda: (create_sample_workflow("multi_input"), "✅ Multi-input sample loaded", export_pretty(create_sample_workflow("multi_input"))),
|
873 |
+
outputs=[loaded_data, status_text, import_json_text]
|
874 |
+
).then(
|
875 |
+
fn=lambda current_trigger: not current_trigger,
|
876 |
+
inputs=trigger_update,
|
877 |
+
outputs=trigger_update
|
878 |
+
)
|
879 |
+
|
880 |
+
btn_sample_chain.click(
|
881 |
+
fn=lambda: (create_sample_workflow("chain"), "✅ Chain processing sample loaded", export_pretty(create_sample_workflow("chain"))),
|
882 |
+
outputs=[loaded_data, status_text, import_json_text]
|
883 |
+
).then(
|
884 |
+
fn=lambda current_trigger: not current_trigger,
|
885 |
+
inputs=trigger_update,
|
886 |
+
outputs=trigger_update
|
887 |
+
)
|
888 |
+
|
889 |
+
# Preview current workflow
|
890 |
+
btn_preview.click(
|
891 |
+
fn=export_pretty,
|
892 |
+
inputs=loaded_data,
|
893 |
+
outputs=export_preview
|
894 |
+
)
|
895 |
+
|
896 |
+
# Download workflow
|
897 |
+
btn_download.click(
|
898 |
+
fn=export_file,
|
899 |
+
inputs=loaded_data
|
900 |
+
)
|
901 |
+
|
902 |
+
# Generate UI execution
|
903 |
+
btn_execute_ui.click(
|
904 |
+
fn=lambda data: data,
|
905 |
+
inputs=loaded_data,
|
906 |
+
outputs=ui_workflow_data
|
907 |
+
)
|
908 |
+
|
909 |
+
# Auto-update export preview when workflow changes
|
910 |
+
loaded_data.change(
|
911 |
+
fn=export_pretty,
|
912 |
+
inputs=loaded_data,
|
913 |
+
outputs=export_preview
|
914 |
+
)
|
915 |
+
|
916 |
+
|
917 |
+
# -------------------------------------------------------------------
|
918 |
+
# 🚀 실행
|
919 |
+
# -------------------------------------------------------------------
|
920 |
+
if __name__ == "__main__":
|
921 |
+
demo.launch(server_name="0.0.0.0", show_error=True)
|