Spaces:
Running
Running
Delete src/backend/gradio_workflowbuilder/workflowbuilder.py
Browse files
src/backend/gradio_workflowbuilder/workflowbuilder.py
DELETED
@@ -1,588 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
from typing import Any, Dict, List, Optional, Union, Callable
|
4 |
-
from pathlib import Path
|
5 |
-
import json
|
6 |
-
from gradio.components import Component
|
7 |
-
|
8 |
-
COMP_DIR = Path(__file__).resolve().parent / "templates" / "component" # ⬅️ 추가
|
9 |
-
|
10 |
-
class WorkflowBuilder(Component):
|
11 |
-
"""
|
12 |
-
Professional Workflow Builder component with support for 25+ node types
|
13 |
-
inspired by n8n and Langflow for AI agent development and MCP integration.
|
14 |
-
"""
|
15 |
-
|
16 |
-
# ▶️ Gradio 4.x : 이벤트 이름을 문자열로 직접 명시
|
17 |
-
EVENTS = ["change", "input"]
|
18 |
-
|
19 |
-
def __init__(
|
20 |
-
self,
|
21 |
-
value: Optional[Dict[str, Any]] = None,
|
22 |
-
label: Optional[str] = None,
|
23 |
-
info: Optional[str] = None,
|
24 |
-
show_label: Optional[bool] = None,
|
25 |
-
container: bool = True,
|
26 |
-
scale: Optional[int] = None,
|
27 |
-
min_width: int = 160,
|
28 |
-
visible: bool = True,
|
29 |
-
elem_id: Optional[str] = None,
|
30 |
-
elem_classes: Optional[List[str]] = None,
|
31 |
-
render: bool = True,
|
32 |
-
**kwargs,
|
33 |
-
):
|
34 |
-
"""
|
35 |
-
Parameters:
|
36 |
-
value: Default workflow data with nodes and edges
|
37 |
-
label: Component label
|
38 |
-
info: Additional component information
|
39 |
-
show_label: Whether to show the label
|
40 |
-
container: Whether to use container styling
|
41 |
-
scale: Relative width scale
|
42 |
-
min_width: Minimum width in pixels
|
43 |
-
visible: Whether component is visible
|
44 |
-
elem_id: HTML element ID
|
45 |
-
elem_classes: CSS classes
|
46 |
-
render: Whether to render immediately
|
47 |
-
"""
|
48 |
-
|
49 |
-
# Initialize with empty workflow if no value provided
|
50 |
-
if value is None:
|
51 |
-
value = {"nodes": [], "edges": []}
|
52 |
-
|
53 |
-
# Validate the workflow data
|
54 |
-
if not isinstance(value, dict):
|
55 |
-
raise ValueError("Workflow value must be a dictionary")
|
56 |
-
|
57 |
-
if "nodes" not in value:
|
58 |
-
value["nodes"] = []
|
59 |
-
if "edges" not in value:
|
60 |
-
value["edges"] = []
|
61 |
-
|
62 |
-
super().__init__(
|
63 |
-
label=label,
|
64 |
-
info=info,
|
65 |
-
show_label=show_label,
|
66 |
-
container=container,
|
67 |
-
scale=scale,
|
68 |
-
min_width=min_width,
|
69 |
-
visible=visible,
|
70 |
-
elem_id=elem_id,
|
71 |
-
elem_classes=elem_classes,
|
72 |
-
render=render,
|
73 |
-
value=value,
|
74 |
-
**kwargs,
|
75 |
-
)
|
76 |
-
|
77 |
-
def preprocess(self, payload: Dict[str, Any]) -> Dict[str, Any]:
|
78 |
-
"""
|
79 |
-
Process workflow data from frontend
|
80 |
-
"""
|
81 |
-
if payload is None:
|
82 |
-
return {"nodes": [], "edges": []}
|
83 |
-
|
84 |
-
# Validate and clean the workflow data
|
85 |
-
workflow = self._validate_workflow(payload)
|
86 |
-
return workflow
|
87 |
-
|
88 |
-
def postprocess(self, value: Dict[str, Any]) -> Dict[str, Any]:
|
89 |
-
"""
|
90 |
-
Process workflow data for frontend
|
91 |
-
"""
|
92 |
-
if value is None:
|
93 |
-
return {"nodes": [], "edges": []}
|
94 |
-
|
95 |
-
# Ensure proper structure
|
96 |
-
if not isinstance(value, dict):
|
97 |
-
return {"nodes": [], "edges": []}
|
98 |
-
|
99 |
-
return {
|
100 |
-
"nodes": value.get("nodes", []),
|
101 |
-
"edges": value.get("edges", [])
|
102 |
-
}
|
103 |
-
|
104 |
-
def _validate_workflow(self, workflow: Dict[str, Any]) -> Dict[str, Any]:
|
105 |
-
"""
|
106 |
-
Validate workflow structure and node configurations
|
107 |
-
"""
|
108 |
-
if not isinstance(workflow, dict):
|
109 |
-
return {"nodes": [], "edges": []}
|
110 |
-
|
111 |
-
nodes = workflow.get("nodes", [])
|
112 |
-
edges = workflow.get("edges", [])
|
113 |
-
|
114 |
-
# Validate each node
|
115 |
-
validated_nodes = []
|
116 |
-
for node in nodes:
|
117 |
-
if self._validate_node(node):
|
118 |
-
validated_nodes.append(node)
|
119 |
-
|
120 |
-
# Validate each edge
|
121 |
-
validated_edges = []
|
122 |
-
node_ids = {node["id"] for node in validated_nodes}
|
123 |
-
for edge in edges:
|
124 |
-
if self._validate_edge(edge, node_ids):
|
125 |
-
validated_edges.append(edge)
|
126 |
-
|
127 |
-
return {
|
128 |
-
"nodes": validated_nodes,
|
129 |
-
"edges": validated_edges
|
130 |
-
}
|
131 |
-
|
132 |
-
def _validate_node(self, node: Dict[str, Any]) -> bool:
|
133 |
-
"""
|
134 |
-
Validate individual node structure and properties
|
135 |
-
"""
|
136 |
-
required_fields = ["id", "type", "position", "data"]
|
137 |
-
|
138 |
-
# Check required fields
|
139 |
-
if not all(field in node for field in required_fields):
|
140 |
-
return False
|
141 |
-
|
142 |
-
# Validate node type
|
143 |
-
if not self._is_valid_node_type(node["type"]):
|
144 |
-
return False
|
145 |
-
|
146 |
-
# Validate position
|
147 |
-
position = node["position"]
|
148 |
-
if not isinstance(position, dict) or "x" not in position or "y" not in position:
|
149 |
-
return False
|
150 |
-
|
151 |
-
# Validate node data based on type
|
152 |
-
return self._validate_node_data(node["type"], node["data"])
|
153 |
-
|
154 |
-
def _validate_edge(self, edge: Dict[str, Any], valid_node_ids: set) -> bool:
|
155 |
-
"""
|
156 |
-
Validate edge connections
|
157 |
-
"""
|
158 |
-
required_fields = ["id", "source", "target"]
|
159 |
-
|
160 |
-
if not all(field in edge for field in required_fields):
|
161 |
-
return False
|
162 |
-
|
163 |
-
# Check if source and target nodes exist
|
164 |
-
return (edge["source"] in valid_node_ids and
|
165 |
-
edge["target"] in valid_node_ids)
|
166 |
-
|
167 |
-
def _is_valid_node_type(self, node_type: str) -> bool:
|
168 |
-
"""
|
169 |
-
Check if node type is supported
|
170 |
-
"""
|
171 |
-
# All the node types from your frontend
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
supported_types = {
|
177 |
-
# 🆕 [CUSTOM] --------------------------------------------------
|
178 |
-
"llmNode", # 범용 LLM 노드 (AI Processing)
|
179 |
-
"textNode", # 간단한 Markdown/Text 노드
|
180 |
-
# --------------------------------------------------------------
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# Input/Output Nodes
|
188 |
-
"ChatInput", "ChatOutput", "Input", "Output",
|
189 |
-
|
190 |
-
# AI & Language Models
|
191 |
-
"OpenAIModel", "ChatModel", "Prompt", "HFTextGeneration",
|
192 |
-
|
193 |
-
# API & Web
|
194 |
-
"APIRequest", "WebSearch",
|
195 |
-
|
196 |
-
# Data Processing
|
197 |
-
"ExecutePython", "ConditionalLogic", "Wait",
|
198 |
-
|
199 |
-
# RAG & Knowledge
|
200 |
-
"KnowledgeBase", "RAGQuery",
|
201 |
-
|
202 |
-
# Speech & Vision
|
203 |
-
"HFSpeechToText", "HFTextToSpeech", "HFVisionModel",
|
204 |
-
|
205 |
-
# Image Generation
|
206 |
-
"HFImageGeneration", "NebiusImage",
|
207 |
-
|
208 |
-
# MCP Integration
|
209 |
-
"MCPConnection", "MCPAgent",
|
210 |
-
|
211 |
-
# Legacy types (for backward compatibility)
|
212 |
-
"textInput", "fileInput", "numberInput", "llm", "textProcessor",
|
213 |
-
"conditional", "textOutput", "fileOutput", "chartOutput",
|
214 |
-
"apiCall", "dataTransform", "webhook", "schedule", "manualTrigger",
|
215 |
-
"emailTrigger", "httpRequest", "googleSheets", "database", "csvFile",
|
216 |
-
"openaiChat", "claudeChat", "huggingFace", "textEmbedding",
|
217 |
-
"codeNode", "functionNode", "setNode", "jsonParse",
|
218 |
-
"ifCondition", "switchNode", "merge", "waitNode",
|
219 |
-
"email", "slack", "discord", "telegram",
|
220 |
-
"fileUpload", "awsS3", "googleDrive", "ftp",
|
221 |
-
"dateTime", "crypto", "validator", "regex"
|
222 |
-
}
|
223 |
-
|
224 |
-
return node_type in supported_types
|
225 |
-
|
226 |
-
def _validate_node_data(self, node_type: str, data: Dict[str, Any]) -> bool:
|
227 |
-
"""
|
228 |
-
Validate node data based on node type
|
229 |
-
"""
|
230 |
-
if not isinstance(data, dict):
|
231 |
-
return False
|
232 |
-
|
233 |
-
# Define required fields for each node type
|
234 |
-
required_fields = {
|
235 |
-
|
236 |
-
|
237 |
-
# 🆕 [CUSTOM] --------------------------------------------------
|
238 |
-
"llmNode": ["template"], # provider · model 등은 template 내부에 존재
|
239 |
-
"textNode": ["template"], # { "text": {...} }
|
240 |
-
# --------------------------------------------------------------
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
# Input/Output Nodes
|
245 |
-
"ChatInput": ["display_name", "template"],
|
246 |
-
"ChatOutput": ["display_name", "template"],
|
247 |
-
"Input": ["display_name", "template"],
|
248 |
-
"Output": ["display_name", "template"],
|
249 |
-
|
250 |
-
# AI & Language Models
|
251 |
-
"OpenAIModel": ["display_name", "template"],
|
252 |
-
"ChatModel": ["display_name", "template"],
|
253 |
-
"Prompt": ["display_name", "template"],
|
254 |
-
"HFTextGeneration": ["display_name", "template"],
|
255 |
-
|
256 |
-
# API & Web
|
257 |
-
"APIRequest": ["display_name", "template"],
|
258 |
-
"WebSearch": ["display_name", "template"],
|
259 |
-
|
260 |
-
# Data Processing
|
261 |
-
"ExecutePython": ["display_name", "template"],
|
262 |
-
"ConditionalLogic": ["display_name", "template"],
|
263 |
-
"Wait": ["display_name", "template"],
|
264 |
-
|
265 |
-
# RAG & Knowledge
|
266 |
-
"KnowledgeBase": ["display_name", "template"],
|
267 |
-
"RAGQuery": ["display_name", "template"],
|
268 |
-
|
269 |
-
# Speech & Vision
|
270 |
-
"HFSpeechToText": ["display_name", "template"],
|
271 |
-
"HFTextToSpeech": ["display_name", "template"],
|
272 |
-
"HFVisionModel": ["display_name", "template"],
|
273 |
-
|
274 |
-
# Image Generation
|
275 |
-
"HFImageGeneration": ["display_name", "template"],
|
276 |
-
"NebiusImage": ["display_name", "template"],
|
277 |
-
|
278 |
-
# MCP Integration
|
279 |
-
"MCPConnection": ["display_name", "template"],
|
280 |
-
"MCPAgent": ["display_name", "template"],
|
281 |
-
|
282 |
-
# Legacy types
|
283 |
-
"webhook": ["method", "path"],
|
284 |
-
"httpRequest": ["method", "url"],
|
285 |
-
"openaiChat": ["model"],
|
286 |
-
"claudeChat": ["model"],
|
287 |
-
"codeNode": ["language", "code"],
|
288 |
-
"ifCondition": ["conditions"],
|
289 |
-
"email": ["fromEmail", "toEmail", "subject"],
|
290 |
-
"awsS3": ["operation", "bucketName"]
|
291 |
-
}
|
292 |
-
|
293 |
-
# Check required fields for this node type
|
294 |
-
if node_type in required_fields:
|
295 |
-
required = required_fields[node_type]
|
296 |
-
if not all(field in data for field in required):
|
297 |
-
return False
|
298 |
-
|
299 |
-
return True
|
300 |
-
|
301 |
-
def api_info(self) -> Dict[str, Any]:
|
302 |
-
"""
|
303 |
-
API information for the component
|
304 |
-
"""
|
305 |
-
return {
|
306 |
-
"info": {
|
307 |
-
"type": "object",
|
308 |
-
"properties": {
|
309 |
-
"nodes": {
|
310 |
-
"type": "array",
|
311 |
-
"items": {
|
312 |
-
"type": "object",
|
313 |
-
"properties": {
|
314 |
-
"id": {"type": "string"},
|
315 |
-
"type": {"type": "string"},
|
316 |
-
"position": {
|
317 |
-
"type": "object",
|
318 |
-
"properties": {
|
319 |
-
"x": {"type": "number"},
|
320 |
-
"y": {"type": "number"}
|
321 |
-
}
|
322 |
-
},
|
323 |
-
"data": {"type": "object"}
|
324 |
-
}
|
325 |
-
}
|
326 |
-
},
|
327 |
-
"edges": {
|
328 |
-
"type": "array",
|
329 |
-
"items": {
|
330 |
-
"type": "object",
|
331 |
-
"properties": {
|
332 |
-
"id": {"type": "string"},
|
333 |
-
"source": {"type": "string"},
|
334 |
-
"target": {"type": "string"}
|
335 |
-
}
|
336 |
-
}
|
337 |
-
}
|
338 |
-
}
|
339 |
-
}
|
340 |
-
}
|
341 |
-
|
342 |
-
def example_payload(self) -> Dict[str, Any]:
|
343 |
-
"""
|
344 |
-
Example payload for the component
|
345 |
-
"""
|
346 |
-
return {
|
347 |
-
"nodes": [
|
348 |
-
{
|
349 |
-
"id": "ChatInput-1",
|
350 |
-
"type": "ChatInput",
|
351 |
-
"position": {"x": 100, "y": 100},
|
352 |
-
"data": {
|
353 |
-
"display_name": "User's Question",
|
354 |
-
"template": {
|
355 |
-
"input_value": {
|
356 |
-
"display_name": "Input",
|
357 |
-
"type": "string",
|
358 |
-
"value": "What is the capital of France?",
|
359 |
-
"is_handle": True
|
360 |
-
}
|
361 |
-
}
|
362 |
-
}
|
363 |
-
},
|
364 |
-
{
|
365 |
-
"id": "Prompt-1",
|
366 |
-
"type": "Prompt",
|
367 |
-
"position": {"x": 300, "y": 100},
|
368 |
-
"data": {
|
369 |
-
"display_name": "System Prompt",
|
370 |
-
"template": {
|
371 |
-
"prompt_template": {
|
372 |
-
"display_name": "Template",
|
373 |
-
"type": "string",
|
374 |
-
"value": "You are a helpful geography expert. The user asked: {input_value}",
|
375 |
-
"is_handle": True
|
376 |
-
}
|
377 |
-
}
|
378 |
-
}
|
379 |
-
},
|
380 |
-
{
|
381 |
-
"id": "OpenAI-1",
|
382 |
-
"type": "OpenAIModel",
|
383 |
-
"position": {"x": 500, "y": 100},
|
384 |
-
"data": {
|
385 |
-
"display_name": "OpenAI gpt-4o-mini",
|
386 |
-
"template": {
|
387 |
-
"model": {
|
388 |
-
"display_name": "Model",
|
389 |
-
"type": "options",
|
390 |
-
"options": ["gpt-4o", "gpt-4o-mini", "gpt-3.5-turbo"],
|
391 |
-
"value": "gpt-4o-mini"
|
392 |
-
},
|
393 |
-
"api_key": {
|
394 |
-
"display_name": "API Key",
|
395 |
-
"type": "SecretStr",
|
396 |
-
"required": True,
|
397 |
-
"env_var": "OPENAI_API_KEY"
|
398 |
-
},
|
399 |
-
"prompt": {
|
400 |
-
"display_name": "Prompt",
|
401 |
-
"type": "string",
|
402 |
-
"is_handle": True
|
403 |
-
}
|
404 |
-
}
|
405 |
-
}
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"id": "ChatOutput-1",
|
409 |
-
"type": "ChatOutput",
|
410 |
-
"position": {"x": 700, "y": 100},
|
411 |
-
"data": {
|
412 |
-
"display_name": "Final Answer",
|
413 |
-
"template": {
|
414 |
-
"response": {
|
415 |
-
"display_name": "Response",
|
416 |
-
"type": "string",
|
417 |
-
"is_handle": True
|
418 |
-
}
|
419 |
-
}
|
420 |
-
}
|
421 |
-
}
|
422 |
-
],
|
423 |
-
"edges": [
|
424 |
-
{
|
425 |
-
"id": "e1",
|
426 |
-
"source": "ChatInput-1",
|
427 |
-
"source_handle": "input_value",
|
428 |
-
"target": "Prompt-1",
|
429 |
-
"target_handle": "prompt_template"
|
430 |
-
},
|
431 |
-
{
|
432 |
-
"id": "e2",
|
433 |
-
"source": "Prompt-1",
|
434 |
-
"source_handle": "prompt_template",
|
435 |
-
"target": "OpenAI-1",
|
436 |
-
"target_handle": "prompt"
|
437 |
-
},
|
438 |
-
{
|
439 |
-
"id": "e3",
|
440 |
-
"source": "OpenAI-1",
|
441 |
-
"source_handle": "response",
|
442 |
-
"target": "ChatOutput-1",
|
443 |
-
"target_handle": "response"
|
444 |
-
}
|
445 |
-
]
|
446 |
-
}
|
447 |
-
|
448 |
-
def example_value(self) -> Dict[str, Any]:
|
449 |
-
"""
|
450 |
-
Example value for the component
|
451 |
-
"""
|
452 |
-
return self.example_payload()
|
453 |
-
|
454 |
-
|
455 |
-
# Utility functions for workflow analysis and execution
|
456 |
-
class WorkflowAnalyzer:
|
457 |
-
"""
|
458 |
-
Analyze workflow configurations and provide insights
|
459 |
-
"""
|
460 |
-
|
461 |
-
@staticmethod
|
462 |
-
def analyze_workflow(workflow: Dict[str, Any]) -> Dict[str, Any]:
|
463 |
-
"""
|
464 |
-
Provide detailed analysis of a workflow
|
465 |
-
"""
|
466 |
-
nodes = workflow.get("nodes", [])
|
467 |
-
edges = workflow.get("edges", [])
|
468 |
-
|
469 |
-
# Count node types
|
470 |
-
node_types = {}
|
471 |
-
for node in nodes:
|
472 |
-
node_type = node.get("type", "unknown")
|
473 |
-
node_types[node_type] = node_types.get(node_type, 0) + 1
|
474 |
-
|
475 |
-
# Analyze workflow complexity
|
476 |
-
complexity = "Simple"
|
477 |
-
if len(nodes) > 10:
|
478 |
-
complexity = "Complex"
|
479 |
-
elif len(nodes) > 5:
|
480 |
-
complexity = "Medium"
|
481 |
-
|
482 |
-
# Check for potential issues
|
483 |
-
issues = []
|
484 |
-
|
485 |
-
# Check for disconnected nodes
|
486 |
-
connected_nodes = set()
|
487 |
-
for edge in edges:
|
488 |
-
connected_nodes.add(edge["source"])
|
489 |
-
connected_nodes.add(edge["target"])
|
490 |
-
|
491 |
-
disconnected = [node["id"] for node in nodes if node["id"] not in connected_nodes]
|
492 |
-
if disconnected:
|
493 |
-
issues.append(f"Disconnected nodes: {', '.join(disconnected)}")
|
494 |
-
|
495 |
-
# Check for missing required fields and API keys
|
496 |
-
for node in nodes:
|
497 |
-
node_type = node.get("type")
|
498 |
-
data = node.get("data", {})
|
499 |
-
|
500 |
-
# Check for required API keys
|
501 |
-
if node_type == "OpenAIModel" and not data.get("template", {}).get("api_key", {}).get("value"):
|
502 |
-
issues.append(f"Node {node['id']} missing OpenAI API key")
|
503 |
-
elif node_type == "ChatModel" and not data.get("template", {}).get("api_key", {}).get("value"):
|
504 |
-
issues.append(f"Node {node['id']} missing API key")
|
505 |
-
elif node_type == "NebiusImage" and not data.get("template", {}).get("api_key", {}).get("value"):
|
506 |
-
issues.append(f"Node {node['id']} missing Nebius API key")
|
507 |
-
|
508 |
-
# Check for required model configurations
|
509 |
-
if node_type in ["OpenAIModel", "ChatModel", "HFTextGeneration"] and not data.get("template", {}).get("model", {}).get("value"):
|
510 |
-
issues.append(f"Node {node['id']} missing model configuration")
|
511 |
-
|
512 |
-
# Check for required templates
|
513 |
-
if node_type in ["Prompt", "ChatInput", "ChatOutput"] and not data.get("template"):
|
514 |
-
issues.append(f"Node {node['id']} missing template configuration")
|
515 |
-
|
516 |
-
# Analyze node categories
|
517 |
-
input_nodes = [n for n in nodes if n.get("type") in ["ChatInput", "Input"]]
|
518 |
-
processing_nodes = [n for n in nodes if n.get("type") in [
|
519 |
-
"OpenAIModel", "ChatModel", "Prompt", "HFTextGeneration",
|
520 |
-
"ExecutePython", "ConditionalLogic", "Wait", "APIRequest",
|
521 |
-
"WebSearch", "KnowledgeBase", "RAGQuery"
|
522 |
-
]]
|
523 |
-
output_nodes = [n for n in nodes if n.get("type") in ["ChatOutput", "Output"]]
|
524 |
-
ai_nodes = [n for n in nodes if n.get("type") in [
|
525 |
-
"OpenAIModel", "ChatModel", "HFTextGeneration", "HFImageGeneration",
|
526 |
-
"NebiusImage", "HFSpeechToText", "HFTextToSpeech", "HFVisionModel"
|
527 |
-
]]
|
528 |
-
|
529 |
-
return {
|
530 |
-
"total_nodes": len(nodes),
|
531 |
-
"total_edges": len(edges),
|
532 |
-
"node_types": node_types,
|
533 |
-
"complexity": complexity,
|
534 |
-
"issues": issues,
|
535 |
-
"is_valid": len(issues) == 0,
|
536 |
-
"categories": {
|
537 |
-
"input_nodes": len(input_nodes),
|
538 |
-
"processing_nodes": len(processing_nodes),
|
539 |
-
"output_nodes": len(output_nodes),
|
540 |
-
"ai_nodes": len(ai_nodes)
|
541 |
-
}
|
542 |
-
}
|
543 |
-
|
544 |
-
@staticmethod
|
545 |
-
def validate_for_execution(workflow: Dict[str, Any]) -> Dict[str, Any]:
|
546 |
-
"""
|
547 |
-
Validate if workflow is ready for execution
|
548 |
-
"""
|
549 |
-
analysis = WorkflowAnalyzer.analyze_workflow(workflow)
|
550 |
-
|
551 |
-
# Additional execution-specific checks
|
552 |
-
nodes = workflow.get("nodes", [])
|
553 |
-
|
554 |
-
# Check for entry points (input nodes)
|
555 |
-
input_types = {"ChatInput", "Input"}
|
556 |
-
inputs = [n for n in nodes if n.get("type") in input_types]
|
557 |
-
|
558 |
-
if not inputs:
|
559 |
-
analysis["issues"].append("No input nodes found - workflow needs an entry point")
|
560 |
-
|
561 |
-
# Check for output nodes
|
562 |
-
output_types = {"ChatOutput", "Output"}
|
563 |
-
outputs = [n for n in nodes if n.get("type") in output_types]
|
564 |
-
|
565 |
-
if not outputs:
|
566 |
-
analysis["issues"].append("No output nodes found - workflow needs an exit point")
|
567 |
-
|
568 |
-
# Check for required environment variables
|
569 |
-
env_vars = set()
|
570 |
-
for node in nodes:
|
571 |
-
data = node.get("data", {})
|
572 |
-
template = data.get("template", {})
|
573 |
-
for field in template.values():
|
574 |
-
if isinstance(field, dict) and field.get("type") == "SecretStr":
|
575 |
-
env_var = field.get("env_var")
|
576 |
-
if env_var:
|
577 |
-
env_vars.add(env_var)
|
578 |
-
|
579 |
-
if env_vars:
|
580 |
-
analysis["required_env_vars"] = list(env_vars)
|
581 |
-
|
582 |
-
analysis["is_executable"] = len(analysis["issues"]) == 0
|
583 |
-
|
584 |
-
return analysis
|
585 |
-
|
586 |
-
|
587 |
-
# Export the main component
|
588 |
-
__all__ = ["WorkflowBuilder", "WorkflowAnalyzer"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|