Spaces:
Running
Running
File size: 14,707 Bytes
1acd6e1 dc2be38 0f95c64 1acd6e1 dc2be38 0b12519 4fb476c 0f95c64 4fb476c dc2be38 828f0f0 3268778 4a31bd8 3268778 4a31bd8 3268778 828f0f0 3268778 828f0f0 4a31bd8 828f0f0 4a31bd8 828f0f0 4a31bd8 0f95c64 0b12519 0f95c64 828f0f0 4a31bd8 828f0f0 4a31bd8 828f0f0 3268778 4a31bd8 1acd6e1 dc2be38 0b12519 0f95c64 0b12519 0f95c64 0b12519 0f95c64 0b12519 0f95c64 0b12519 dc2be38 3268778 4a31bd8 1acd6e1 4a31bd8 0f95c64 1acd6e1 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 1acd6e1 dc2be38 0f95c64 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 4a31bd8 dc2be38 0f95c64 0b12519 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 1acd6e1 3268778 4a31bd8 3268778 dc2be38 3268778 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 0f95c64 dd6e62d 1acd6e1 3268778 dc2be38 dd6e62d 0f95c64 dd6e62d dc2be38 762f595 0f95c64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import streamlit as st
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.express as px
import matplotlib.pyplot as plt
from datetime import date
from pathlib import Path
import matplotlib.font_manager as fm
import matplotlib as mpl
# -------------------------------------------------
# CONFIG ------------------------------------------
# -------------------------------------------------
CSV_PATH = Path("2025-domae.csv") # νμΌ κ²½λ‘ μμ
MACRO_START, MACRO_END = "1996-01-01", "2030-12-31"
MICRO_START, MICRO_END = "2020-01-01", "2026-12-31"
# νκΈ ν°νΈ μ€μ
font_list = [f.name for f in fm.fontManager.ttflist if 'gothic' in f.name.lower() or
'gulim' in f.name.lower() or 'malgun' in f.name.lower() or
'nanum' in f.name.lower() or 'batang' in f.name.lower()]
if font_list:
font_name = font_list[0]
plt.rcParams['font.family'] = font_name
mpl.rcParams['axes.unicode_minus'] = False
else:
plt.rcParams['font.family'] = 'DejaVu Sans'
st.set_page_config(page_title="νλͺ©λ³ κ°κ²© μμΈ‘", page_icon="π", layout="wide")
# -------------------------------------------------
# UTILITIES ---------------------------------------
# -------------------------------------------------
DATE_CANDIDATES = {"date", "ds", "ymd", "λ μ§", "prce_reg_mm", "etl_ldg_dt"}
ITEM_CANDIDATES = {"item", "νλͺ©", "code", "category", "pdlt_nm", "spcs_nm"}
PRICE_CANDIDATES = {"price", "y", "value", "κ°κ²©", "avrg_prce"}
def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
"""Standardize column names to date/item/price and deduplicate."""
col_map = {}
for c in df.columns:
lc = c.lower()
if lc in DATE_CANDIDATES:
col_map[c] = "date"
elif lc in PRICE_CANDIDATES:
col_map[c] = "price"
elif lc in ITEM_CANDIDATES:
# first hit as item, second as species
if "item" not in col_map.values():
col_map[c] = "item"
else:
col_map[c] = "species"
df = df.rename(columns=col_map)
# ββ handle duplicated columns after rename βββββββββββββββββββββββββ
if df.columns.duplicated().any():
df = df.loc[:, ~df.columns.duplicated()]
# ββ index datetime to column βββββββββββββββββββββββββββββββββββββββ
if "date" not in df.columns and df.index.dtype.kind == "M":
df.reset_index(inplace=True)
df.rename(columns={df.columns[0]: "date"}, inplace=True)
# ββ convert YYYYMM string to datetime ββββββββββββββββββββββββββββββ
if "date" in df.columns and pd.api.types.is_object_dtype(df["date"]):
if len(df) > 0:
sample = str(df["date"].iloc[0])
if sample.isdigit() and len(sample) in (6, 8):
df["date"] = pd.to_datetime(df["date"].astype(str).str[:6], format="%Y%m", errors="coerce")
# ββ build item from pdlt_nm + spcs_nm if needed ββββββββββββββββββββ
if "item" not in df.columns and {"pdlt_nm", "spcs_nm"}.issubset(df.columns):
df["item"] = df["pdlt_nm"].str.strip() + "-" + df["spcs_nm"].str.strip()
# ββ merge item + species βββββββββββββββββββββββββββββββββββββββββββ
if {"item", "species"}.issubset(df.columns):
df["item"] = df["item"].astype(str).str.strip() + "-" + df["species"].astype(str).str.strip()
df.drop(columns=["species"], inplace=True)
return df
@st.cache_data(show_spinner=False)
def load_data() -> pd.DataFrame:
"""Load price data from CSV file."""
try:
if not CSV_PATH.exists():
st.error(f"πΎ {CSV_PATH} νμΌμ μ°Ύμ μ μμ΅λλ€.")
st.stop()
st.sidebar.info(f"{CSV_PATH} νμΌμμ λ°μ΄ν°λ₯Ό λΆλ¬μ΅λλ€.")
# CSV νμΌ μ§μ λ‘λ
df = pd.read_csv(CSV_PATH)
st.sidebar.success(f"CSV λ°μ΄ν° λ‘λ μλ£: {len(df)}κ° ν")
# μλ³Έ λ°μ΄ν° νν νμΈ
st.sidebar.write("μλ³Έ λ°μ΄ν° 컬λΌ:", list(df.columns))
df = _standardize_columns(df)
st.sidebar.write("νμ€ν ν 컬λΌ:", list(df.columns))
missing = {c for c in ["date", "item", "price"] if c not in df.columns}
if missing:
st.error(f"νμ μ»¬λΌ λλ½: {', '.join(missing)} β νμΌ μ»¬λΌλͺ
μ νμΈνμΈμ.")
st.stop()
# λ μ§ λ³ν
before_date_convert = len(df)
df["date"] = pd.to_datetime(df["date"], errors="coerce")
after_date_convert = df.dropna(subset=["date"]).shape[0]
if before_date_convert != after_date_convert:
st.warning(f"λ μ§ λ³ν μ€ {before_date_convert - after_date_convert}κ° νμ΄ μ μΈλμμ΅λλ€.")
# NA λ°μ΄ν° μ²λ¦¬
before_na_drop = len(df)
df = df.dropna(subset=["date", "item", "price"])
after_na_drop = len(df)
if before_na_drop != after_na_drop:
st.warning(f"NA μ κ±° μ€ {before_na_drop - after_na_drop}κ° νμ΄ μ μΈλμμ΅λλ€.")
df.sort_values("date", inplace=True)
# λ°μ΄ν° λ μ§ λ²μ νμΈ
if len(df) > 0:
st.sidebar.write(f"λ°μ΄ν° λ μ§ λ²μ: {df['date'].min().strftime('%Y-%m-%d')} ~ {df['date'].max().strftime('%Y-%m-%d')}")
st.sidebar.write(f"μ΄ νλͺ© μ: {df['item'].nunique()}")
else:
st.error("μ ν¨ν λ°μ΄ν°κ° μμ΅λλ€!")
return df
except Exception as e:
st.error(f"λ°μ΄ν° λ‘λ μ€ μ€λ₯ λ°μ: {str(e)}")
# μ€λ₯ μμΈ μ 보 νμ
import traceback
st.code(traceback.format_exc())
st.stop()
@st.cache_data(show_spinner=False)
def get_items(df: pd.DataFrame):
return sorted(df["item"].unique())
@st.cache_data(show_spinner=False, ttl=3600)
def fit_prophet(df: pd.DataFrame, horizon_end: str):
# Make a copy and ensure we have data
df = df.copy()
df = df.dropna(subset=["date", "price"])
# μ€λ³΅ λ μ§ μ²λ¦¬ - λμΌ λ μ§μ μ¬λ¬ κ°μ΄ μμΌλ©΄ νκ· κ° μ¬μ©
df = df.groupby("date")["price"].mean().reset_index()
if len(df) < 2:
st.warning(f"λ°μ΄ν° ν¬μΈνΈκ° λΆμ‘±ν©λλ€. μμΈ‘μ μν΄μλ μ΅μ 2κ° μ΄μμ μ ν¨ λ°μ΄ν°κ° νμν©λλ€. (νμ¬ {len(df)}κ°)")
return None, None
# Convert to Prophet format
prophet_df = df.rename(columns={"date": "ds", "price": "y"})
try:
# Fit the model
m = Prophet(yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False)
m.fit(prophet_df)
# Generate future dates
periods = max((pd.Timestamp(horizon_end) - df["date"].max()).days, 1)
future = m.make_future_dataframe(periods=periods, freq="D")
# Make predictions
forecast = m.predict(future)
return m, forecast
except Exception as e:
st.error(f"Prophet λͺ¨λΈ μμ± μ€ μ€λ₯: {str(e)}")
return None, None
# -------------------------------------------------
# LOAD DATA ---------------------------------------
# -------------------------------------------------
raw_df = load_data()
if len(raw_df) == 0:
st.error("λ°μ΄ν°κ° λΉμ΄ μμ΅λλ€. νμΌμ νμΈν΄μ£ΌμΈμ.")
st.stop()
st.sidebar.header("π νλͺ© μ ν")
selected_item = st.sidebar.selectbox("νλͺ©", get_items(raw_df))
current_date = date.today()
st.sidebar.caption(f"μ€λ: {current_date}")
item_df = raw_df.query("item == @selected_item").copy()
if item_df.empty:
st.error("μ νν νλͺ© λ°μ΄ν° μμ")
st.stop()
# -------------------------------------------------
# MACRO FORECAST 1996β2030 ------------------------
# -------------------------------------------------
st.header(f"π {selected_item} κ°κ²© μμΈ‘ λμ보λ")
# λ°μ΄ν° νν°λ§ λ‘μ§ κ°μ
try:
macro_start_dt = pd.Timestamp(MACRO_START)
# λ°μ΄ν°κ° μΆ©λΆνμ§ μμΌλ©΄ μμ λ μ§λ₯Ό μ‘°μ
if len(item_df[item_df["date"] >= macro_start_dt]) < 10:
# κ°μ₯ μ€λλ λ μ§λΆν° μμ
macro_start_dt = item_df["date"].min()
st.info(f"μΆ©λΆν λ°μ΄ν°κ° μμ΄ μμ λ μ§λ₯Ό {macro_start_dt.strftime('%Y-%m-%d')}λ‘ μ‘°μ νμ΅λλ€.")
macro_df = item_df[item_df["date"] >= macro_start_dt].copy()
except Exception as e:
st.error(f"λ μ§ νν°λ§ μ€λ₯: {str(e)}")
macro_df = item_df.copy() # νν°λ§ μμ΄ μ 체 λ°μ΄ν° μ¬μ©
# Add diagnostic info
with st.expander("λ°μ΄ν° μ§λ¨"):
st.write(f"- μ 체 λ°μ΄ν° μ: {len(item_df)}")
st.write(f"- λΆμ λ°μ΄ν° μ: {len(macro_df)}")
if len(macro_df) > 0:
st.write(f"- κΈ°κ°: {macro_df['date'].min().strftime('%Y-%m-%d')} ~ {macro_df['date'].max().strftime('%Y-%m-%d')}")
st.dataframe(macro_df.head())
else:
st.write("λ°μ΄ν°κ° μμ΅λλ€.")
if len(macro_df) < 2:
st.warning(f"{selected_item}μ λν λ°μ΄ν°κ° μΆ©λΆνμ§ μμ΅λλ€. μ 체 κΈ°κ° λ°μ΄ν°λ₯Ό νμν©λλ€.")
fig = px.line(item_df, x="date", y="price", title=f"{selected_item} κ³Όκ±° κ°κ²©")
st.plotly_chart(fig, use_container_width=True)
else:
try:
with st.spinner("μ₯κΈ° μμΈ‘ λͺ¨λΈ μμ± μ€..."):
m_macro, fc_macro = fit_prophet(macro_df, MACRO_END)
if m_macro is not None and fc_macro is not None:
fig_macro = px.line(fc_macro, x="ds", y="yhat", title="μ₯κΈ° μμΈ‘ (1996β2030)")
fig_macro.add_scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="μ€μ κ°κ²©")
st.plotly_chart(fig_macro, use_container_width=True)
latest_price = macro_df.iloc[-1]["price"]
# 2030λ
λ§μ§λ§ λ μ°ΎκΈ°
target_date = pd.Timestamp(MACRO_END)
close_dates = fc_macro.loc[(fc_macro["ds"] - target_date).abs().argsort()[:1], "ds"].values[0]
macro_pred = fc_macro.loc[fc_macro["ds"] == close_dates, "yhat"].iloc[0]
macro_pct = (macro_pred - latest_price) / latest_price * 100
st.metric("2030 μμΈ‘κ°", f"{macro_pred:,.0f}", f"{macro_pct:+.1f}%")
else:
st.warning("μμΈ‘ λͺ¨λΈμ μμ±ν μ μμ΅λλ€.")
fig = px.line(item_df, x="date", y="price", title=f"{selected_item} κ³Όκ±° κ°κ²©")
st.plotly_chart(fig, use_container_width=True)
except Exception as e:
st.error(f"μ₯κΈ° μμΈ‘ μ€λ₯ λ°μ: {str(e)}")
fig = px.line(item_df, x="date", y="price", title=f"{selected_item} κ³Όκ±° κ°κ²©")
st.plotly_chart(fig, use_container_width=True)
# -------------------------------------------------
# MICRO FORECAST 2024β2026 ------------------------
# -------------------------------------------------
st.subheader("π 2024β2026 λ¨κΈ° μμΈ‘")
# λ°μ΄ν° νν°λ§ λ‘μ§ κ°μ
try:
micro_start_dt = pd.Timestamp(MICRO_START)
# λ°μ΄ν°κ° μΆ©λΆνμ§ μμΌλ©΄ μμ λ μ§λ₯Ό μ‘°μ
if len(item_df[item_df["date"] >= micro_start_dt]) < 10:
# μ΅κ·Ό 30% λ°μ΄ν°λ§ μ¬μ©
n = max(2, int(len(item_df) * 0.3))
micro_df = item_df.sort_values("date").tail(n).copy()
st.info(f"μΆ©λΆν μ΅κ·Ό λ°μ΄ν°κ° μμ΄ μ΅κ·Ό {n}κ° λ°μ΄ν° ν¬μΈνΈλ§ μ¬μ©ν©λλ€.")
else:
micro_df = item_df[item_df["date"] >= micro_start_dt].copy()
except Exception as e:
st.error(f"λ¨κΈ° μμΈ‘ λ°μ΄ν° νν°λ§ μ€λ₯: {str(e)}")
# μ΅κ·Ό 10κ° λ°μ΄ν° ν¬μΈνΈ μ¬μ©
micro_df = item_df.sort_values("date").tail(10).copy()
if len(micro_df) < 2:
st.warning(f"{MICRO_START} μ΄ν λ°μ΄ν°κ° μΆ©λΆνμ§ μμ΅λλ€.")
fig = px.line(item_df, x="date", y="price", title=f"{selected_item} μ΅κ·Ό κ°κ²©")
st.plotly_chart(fig, use_container_width=True)
else:
try:
with st.spinner("λ¨κΈ° μμΈ‘ λͺ¨λΈ μμ± μ€..."):
m_micro, fc_micro = fit_prophet(micro_df, MICRO_END)
if m_micro is not None and fc_micro is not None:
fig_micro = px.line(fc_micro, x="ds", y="yhat", title="λ¨κΈ° μμΈ‘ (2024β2026)")
fig_micro.add_scatter(x=micro_df["date"], y=micro_df["price"], mode="lines", name="μ€μ κ°κ²©")
st.plotly_chart(fig_micro, use_container_width=True)
latest_price = micro_df.iloc[-1]["price"]
target_date = pd.Timestamp(MICRO_END)
close_dates = fc_micro.loc[(fc_micro["ds"] - target_date).abs().argsort()[:1], "ds"].values[0]
micro_pred = fc_micro.loc[fc_micro["ds"] == close_dates, "yhat"].iloc[0]
micro_pct = (micro_pred - latest_price) / latest_price * 100
st.metric("2026 μμΈ‘κ°", f"{micro_pred:,.0f}", f"{micro_pct:+.1f}%")
else:
st.warning("λ¨κΈ° μμΈ‘ λͺ¨λΈμ μμ±ν μ μμ΅λλ€.")
except Exception as e:
st.error(f"λ¨κΈ° μμΈ‘ μ€λ₯: {str(e)}")
# -------------------------------------------------
# SEASONALITY & PATTERN ---------------------------
# -------------------------------------------------
with st.expander("π μμ¦λλ¦¬ν° & ν¨ν΄ μ€λͺ
"):
if 'm_micro' in locals() and m_micro is not None and 'fc_micro' in locals() and fc_micro is not None:
try:
comp_fig = m_micro.plot_components(fc_micro)
st.pyplot(comp_fig)
month_season = (fc_micro[["ds", "yearly"]]
.assign(month=lambda d: d.ds.dt.month)
.groupby("month")["yearly"].mean())
st.markdown(
f"**μ°κ° νΌν¬ μ:** {int(month_season.idxmax())}μ \n"
f"**μ°κ° μ μ μ:** {int(month_season.idxmin())}μ \n"
f"**μ°κ° λ³λν:** {month_season.max() - month_season.min():.1f}")
except Exception as e:
st.error(f"μμ¦λλ¦¬ν° λΆμ μ€λ₯: {str(e)}")
else:
st.info("ν¨ν΄ λΆμμ μν μΆ©λΆν λ°μ΄ν°κ° μμ΅λλ€.")
# -------------------------------------------------
# FOOTER ------------------------------------------
# -------------------------------------------------
st.markdown("---")
st.caption("Β© 2025 νλͺ©λ³ κ°κ²© μμΈ‘ μμ€ν
| λ°μ΄ν° λΆμ μλν") |