File size: 6,114 Bytes
1acd6e1
 
 
 
 
 
 
 
 
 
4fb476c
 
 
 
 
 
 
 
 
 
 
 
1acd6e1
 
 
 
 
 
 
 
 
 
4fb476c
1acd6e1
 
 
 
 
 
 
4fb476c
 
 
1acd6e1
4fb476c
1acd6e1
4fb476c
1acd6e1
 
 
4fb476c
1acd6e1
 
4fb476c
 
 
 
 
1acd6e1
4fb476c
 
1acd6e1
 
 
4fb476c
 
 
 
 
 
1acd6e1
4fb476c
 
 
 
1acd6e1
4fb476c
1acd6e1
4fb476c
 
1acd6e1
 
 
4fb476c
 
 
 
1acd6e1
4fb476c
 
 
 
1acd6e1
 
4fb476c
 
 
 
 
 
 
 
 
 
 
 
 
1acd6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fb476c
 
 
1acd6e1
 
4fb476c
 
 
 
1acd6e1
4fb476c
 
1acd6e1
 
 
4fb476c
 
1acd6e1
 
4fb476c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.express as px
import plotly.graph_objects as go
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date

# ---------------------------------------------
# CONFIG --------------------------------------
# ---------------------------------------------
DATA_PATH = "price_data.csv"  # CSV: date, item, price
MACRO_START, MACRO_END = "1996-01-01", "2030-12-31"
MICRO_START, MICRO_END = "2020-01-01", "2026-12-31"

st.set_page_config(page_title="ํ’ˆ๋ชฉ๋ณ„ ๊ฐ€๊ฒฉ ์˜ˆ์ธก", page_icon="๐Ÿ“ˆ", layout="wide")

# ---------------------------------------------
# UTILITIES -----------------------------------
# ---------------------------------------------
@st.cache_data(show_spinner=False)
def load_data(path: str) -> pd.DataFrame:
    df = pd.read_csv(path, parse_dates=["date"])
    df.sort_values("date", inplace=True)
    return df

@st.cache_data(show_spinner=False)
def get_items(df: pd.DataFrame):
    return sorted(df["item"].unique())

@st.cache_data(show_spinner=False)
def fit_prophet(df: pd.DataFrame, horizon_end: str):
    m = Prophet(yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False)
    m.fit(df.rename(columns={"date": "ds", "price": "y"}))
    future = m.make_future_dataframe(periods=(pd.Timestamp(horizon_end) - df["date"].max()).days, freq="D")
    forecast = m.predict(future)
    return m, forecast

# ---------------------------------------------
# LOAD ----------------------------------------
# ---------------------------------------------
raw_df = load_data(DATA_PATH)
selected_item = st.sidebar.selectbox("๐Ÿ” ํ’ˆ๋ชฉ ์„ ํƒ", get_items(raw_df))
current_date = date.today()
st.sidebar.write(f"**์˜ค๋Š˜:** {current_date}")

item_df = raw_df[raw_df["item"] == selected_item].copy()
if item_df.empty:
    st.error("๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")
    st.stop()

# ---------------------------------------------
# MACRO FORECAST ------------------------------
# ---------------------------------------------
st.header(f"๐Ÿ“ˆ {selected_item} ๊ฐ€๊ฒฉ ์ „๋ง")
macro_df = item_df[item_df["date"] >= MACRO_START]

m_macro, fc_macro = fit_prophet(macro_df, MACRO_END)
fig_macro = px.line(fc_macro, x="ds", y="yhat", title="Macro Forecast 1996โ€“2030")
fig_macro.add_scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_macro, use_container_width=True)

# --- Metrics โ†“
latest_price = macro_df.iloc[-1]["price"]
macro_last = fc_macro[fc_macro["ds"] == MACRO_END]["yhat"].iloc[0]
macro_diff = macro_last - latest_price
macro_pct = macro_diff / latest_price * 100
st.metric(label="2030 ์˜ˆ์ธก ๊ฐ€๊ฒฉ", value=f"{macro_last:,.0f}", delta=f"{macro_pct:+.1f}% vs ์ตœ๊ทผ")

# ---------------------------------------------
# MICRO FORECAST ------------------------------
# ---------------------------------------------
st.subheader("๐Ÿ”Ž ๋ฏธ์‹œ ์˜ˆ์ธก 2024โ€“2026")

micro_df = item_df[item_df["date"] >= MICRO_START]

m_micro, fc_micro = fit_prophet(micro_df, MICRO_END)
fig_micro = px.line(fc_micro, x="ds", y="yhat", title="Micro Forecast 2024โ€“2026")
fig_micro.add_scatter(x=micro_df["date"], y=micro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_micro, use_container_width=True)

micro_last = fc_micro[fc_micro["ds"] == MICRO_END]["yhat"].iloc[0]
micro_diff = micro_last - latest_price
micro_pct = micro_diff / latest_price * 100
st.metric(label="2026 ์˜ˆ์ธก ๊ฐ€๊ฒฉ", value=f"{micro_last:,.0f}", delta=f"{micro_pct:+.1f}% vs ์ตœ๊ทผ")

# ---------------------------------------------
# PATTERN & SEASONALITY -----------------------
# ---------------------------------------------
with st.expander("๐Ÿ“† ์‹œ์ฆˆ๋„๋ฆฌํ‹ฐ ๋ถ„์„ ๋ฐ ํŒจํ„ด ํ•ด์„ค"):
    comp_fig = m_micro.plot_components(fc_micro)
    st.pyplot(comp_fig)

    # ์›”๋ณ„ seasonality summary
    month_season = (fc_micro[["ds", "yearly"]]
                    .assign(month=lambda d: d["ds"].dt.month)
                    .groupby("month")["yearly"].mean())
    peak_month = int(month_season.idxmax())
    trough_month = int(month_season.idxmin())

    st.markdown(f"**ํŒจํ„ด ์š”์•ฝ**  \n- __์—ฐ๊ฐ„ ํ”ผํฌ__: {peak_month}์›”   \n- __์—ฐ๊ฐ„ ์ €์ __: {trough_month}์›”  \n- ํ‰๊ท  ๋ณ€๋™ํญ(์—ฐ): {month_season.max() - month_season.min():.1f} ๋‹จ๊ฐ€")

# ---------------------------------------------
# CORRELATION HEATMAP -------------------------
# ---------------------------------------------
st.subheader("๐Ÿงฎ ํ’ˆ๋ชฉ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„ ํžˆํŠธ๋งต")

corr_df = (raw_df.assign(month=lambda d: d["date"].dt.to_period("M"))
                   .groupby(["month", "item"], as_index=False)["price"].mean()
                   .pivot(index="month", columns="item", values="price"))

corr = corr_df.corr()

fig, ax = plt.subplots(figsize=(12, 10))
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, mask=mask, cmap="RdBu_r", center=0, linewidths=.5, ax=ax)
st.pyplot(fig)

st.markdown("""
**ํ•ด์„ ๊ฐ€์ด๋“œ**  
- **๋นจ๊ฐ„์ƒ‰(+)**: ๋‘ ํ’ˆ๋ชฉ ๊ฐ€๊ฒฉ์ด ๋™์กฐํ™” โ€“ ๊ณต๊ธ‰๋ง/์ˆ˜์š” ์—ฐ๋™ ๊ฐ€๋Šฅ์„ฑ.  
- **ํŒŒ๋ž€์ƒ‰(-)**: ๋Œ€์ฒด์žฌ ๊ด€๊ณ„.  
- ์ ˆ๋Œ“๊ฐ’ โ‰ฅ 0.7 ์€ ์ •์ฑ…ยท์žฌ๊ณ  ์ „๋žต ์„ค๊ณ„ ์‹œ ์ฃผ์˜ ๊นŠ๊ฒŒ ๋ณผ ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
""")

# ---------------------------------------------
# EXTRA CHARTS -------------------------------
# ---------------------------------------------
st.subheader("๐Ÿ“Š ์ถ”๊ฐ€ ์ธ์‚ฌ์ดํŠธ: 30์ผ ์ด๋™ ๋ณ€๋™์„ฑ")

vol_df = (item_df.set_index("date")["price"].rolling(30).std().reset_index())
fig_vol = px.area(vol_df, x="date", y="price", title="30D Rolling Std Dev")
st.plotly_chart(fig_vol, use_container_width=True)

st.markdown("""
- ๋ณ€๋™์„ฑ ๊ธ‰๋“ฑ ๊ตฌ๊ฐ„์€ **๊ณต๊ธ‰ ์ถฉ๊ฒฉยท์ˆ˜์š” ์ด๋ฒคํŠธ** ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Šต๋‹ˆ๋‹ค.  
- ์ตœ๊ทผ ๋ณ€๋™์„ฑ์ด ๋‚ฎ์•„์ง€๋ฉด **๊ฐ€๊ฒฉ ์•ˆ์ฐฉ**์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
""")

# ---------------------------------------------
# FOOTER --------------------------------------
# ---------------------------------------------
st.caption("๋ฐ์ดํ„ฐ ์ถœ์ฒ˜: ๋‚ด๋ถ€ ๋†์ˆ˜์‚ฐ๋ฌผ ๊ฐ€๊ฒฉ DB ยท Forecast by Prophet ยท Dashboard built with Streamlit")