File size: 17,942 Bytes
1acd6e1
 
 
 
 
 
 
 
dc2be38
0f95c64
 
1acd6e1
dc2be38
 
 
 
0f95c64
4fb476c
 
 
0f95c64
 
 
 
 
 
 
 
 
 
 
 
 
 
4fb476c
 
dc2be38
 
 
828f0f0
 
 
3268778
4a31bd8
3268778
4a31bd8
3268778
 
 
828f0f0
3268778
 
 
828f0f0
4a31bd8
828f0f0
 
 
 
 
 
4a31bd8
 
 
 
 
828f0f0
 
 
 
4a31bd8
0f95c64
 
 
 
 
828f0f0
4a31bd8
828f0f0
 
 
4a31bd8
828f0f0
 
 
3268778
 
 
4a31bd8
1acd6e1
dc2be38
4a31bd8
0f95c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2be38
3268778
4a31bd8
1acd6e1
 
 
 
4a31bd8
0f95c64
1acd6e1
dd6e62d
 
 
 
0f95c64
 
 
dd6e62d
0f95c64
dd6e62d
 
 
 
 
0f95c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1acd6e1
dc2be38
 
 
 
 
0f95c64
 
 
 
dc2be38
 
1acd6e1
dc2be38
1acd6e1
dc2be38
1acd6e1
dc2be38
1acd6e1
 
dc2be38
4a31bd8
dc2be38
 
0f95c64
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6e62d
 
 
 
0f95c64
 
 
 
 
 
dd6e62d
 
0f95c64
dd6e62d
 
 
 
0f95c64
 
 
dd6e62d
0f95c64
 
dd6e62d
 
 
0f95c64
 
 
 
dd6e62d
 
 
 
 
 
 
0f95c64
dd6e62d
 
1acd6e1
3268778
4a31bd8
3268778
dc2be38
3268778
0f95c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6e62d
 
 
 
 
 
0f95c64
 
 
dd6e62d
0f95c64
 
dd6e62d
 
 
0f95c64
 
 
dd6e62d
 
 
 
 
 
1acd6e1
3268778
 
 
dc2be38
dd6e62d
0f95c64
 
 
 
 
 
 
 
 
 
 
 
 
dd6e62d
 
dc2be38
3268778
 
 
dc2be38
dd6e62d
0f95c64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6e62d
0f95c64
 
 
 
dd6e62d
0f95c64
 
dd6e62d
 
0f95c64
 
 
 
 
dd6e62d
0f95c64
 
 
dd6e62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f95c64
762f595
 
 
 
 
0f95c64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import streamlit as st
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date
from pathlib import Path
import matplotlib.font_manager as fm
import matplotlib as mpl

# -------------------------------------------------
# CONFIG ------------------------------------------
# -------------------------------------------------
CSV_PATH = Path("price_data.csv")
PARQUET_PATH = Path("domae-202503.parquet")
MACRO_START, MACRO_END = "1996-01-01", "2030-12-31"
MICRO_START, MICRO_END = "2020-01-01", "2026-12-31"

# ํ•œ๊ธ€ ํฐํŠธ ์„ค์ •
# 1. ์‹œ์Šคํ…œ์— ์„ค์น˜๋œ ํ•œ๊ธ€ ํฐํŠธ ์ฐพ๊ธฐ
font_list = [f.name for f in fm.fontManager.ttflist if 'gothic' in f.name.lower() or 
             'gulim' in f.name.lower() or 'malgun' in f.name.lower() or 
             'nanum' in f.name.lower() or 'batang' in f.name.lower()]

if font_list:
    font_name = font_list[0]
    plt.rcParams['font.family'] = font_name
    mpl.rcParams['axes.unicode_minus'] = False
else:
    # ํฐํŠธ๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ๊ธฐ๋ณธ ํฐํŠธ ์„ค์ •
    plt.rcParams['font.family'] = 'DejaVu Sans'

st.set_page_config(page_title="ํ’ˆ๋ชฉ๋ณ„ ๊ฐ€๊ฒฉ ์˜ˆ์ธก", page_icon="๐Ÿ“ˆ", layout="wide")

# -------------------------------------------------
# UTILITIES ---------------------------------------
# -------------------------------------------------
DATE_CANDIDATES = {"date", "ds", "ymd", "๋‚ ์งœ", "prce_reg_mm", "etl_ldg_dt"}
ITEM_CANDIDATES = {"item", "ํ’ˆ๋ชฉ", "code", "category", "pdlt_nm", "spcs_nm"}
PRICE_CANDIDATES = {"price", "y", "value", "๊ฐ€๊ฒฉ", "avrg_prce"}


def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
    """Standardize column names to date/item/price and deduplicate."""
    col_map = {}
    for c in df.columns:
        lc = c.lower()
        if lc in DATE_CANDIDATES:
            col_map[c] = "date"
        elif lc in PRICE_CANDIDATES:
            col_map[c] = "price"
        elif lc in ITEM_CANDIDATES:
            # first hit as item, second as species
            if "item" not in col_map.values():
                col_map[c] = "item"
            else:
                col_map[c] = "species"
    df = df.rename(columns=col_map)

    # โ”€โ”€ handle duplicated columns after rename โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
    if df.columns.duplicated().any():
        df = df.loc[:, ~df.columns.duplicated()]

    # โ”€โ”€ index datetime to column โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
    if "date" not in df.columns and df.index.dtype.kind == "M":
        df.reset_index(inplace=True)
        df.rename(columns={df.columns[0]: "date"}, inplace=True)

    # โ”€โ”€ convert YYYYMM string to datetime โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
    if "date" in df.columns and pd.api.types.is_object_dtype(df["date"]):
        if len(df) > 0:  # ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋Š”์ง€ ํ™•์ธ
            sample = str(df["date"].iloc[0])
            if sample.isdigit() and len(sample) in (6, 8):
                df["date"] = pd.to_datetime(df["date"].astype(str).str[:6], format="%Y%m", errors="coerce")

    # โ”€โ”€ build item from pdlt_nm + spcs_nm if needed โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
    if "item" not in df.columns and {"pdlt_nm", "spcs_nm"}.issubset(df.columns):
        df["item"] = df["pdlt_nm"].str.strip() + "-" + df["spcs_nm"].str.strip()

    # โ”€โ”€ merge item + species โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
    if {"item", "species"}.issubset(df.columns):
        df["item"] = df["item"].astype(str).str.strip() + "-" + df["species"].astype(str).str.strip()
        df.drop(columns=["species"], inplace=True)

    return df


@st.cache_data(show_spinner=False)
def load_data() -> pd.DataFrame:
    """Load price data from Parquet if available, else CSV. Handle flexible schema."""
    try:
        if PARQUET_PATH.exists():
            st.sidebar.info("Parquet ํŒŒ์ผ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค.")
            df = pd.read_parquet(PARQUET_PATH)
            st.sidebar.success(f"Parquet ๋ฐ์ดํ„ฐ ๋กœ๋“œ ์™„๋ฃŒ: {len(df)}๊ฐœ ํ–‰")
        elif CSV_PATH.exists():
            st.sidebar.info("CSV ํŒŒ์ผ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค.")
            df = pd.read_csv(CSV_PATH)
            st.sidebar.success(f"CSV ๋ฐ์ดํ„ฐ ๋กœ๋“œ ์™„๋ฃŒ: {len(df)}๊ฐœ ํ–‰")
        else:
            st.error("๐Ÿ’พ price_data.csv ๋˜๋Š” domae-202503.parquet ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
            st.stop()

        # ์›๋ณธ ๋ฐ์ดํ„ฐ ํ˜•ํƒœ ํ™•์ธ
        st.sidebar.write("์›๋ณธ ๋ฐ์ดํ„ฐ ์ปฌ๋Ÿผ:", list(df.columns))
        
        df = _standardize_columns(df)
        st.sidebar.write("ํ‘œ์ค€ํ™” ํ›„ ์ปฌ๋Ÿผ:", list(df.columns))

        missing = {c for c in ["date", "item", "price"] if c not in df.columns}
        if missing:
            st.error(f"ํ•„์ˆ˜ ์ปฌ๋Ÿผ ๋ˆ„๋ฝ: {', '.join(missing)} โ€” ํŒŒ์ผ ์ปฌ๋Ÿผ๋ช…์„ ํ™•์ธํ•˜์„ธ์š”.")
            st.stop()

        # ๋‚ ์งœ ๋ณ€ํ™˜ ์ „ํ›„ ๋ฐ์ดํ„ฐ ์ˆ˜ ํ™•์ธ
        before_date_convert = len(df)
        df["date"] = pd.to_datetime(df["date"], errors="coerce")
        after_date_convert = df.dropna(subset=["date"]).shape[0]
        if before_date_convert != after_date_convert:
            st.warning(f"๋‚ ์งœ ๋ณ€ํ™˜ ์ค‘ {before_date_convert - after_date_convert}๊ฐœ ํ–‰์ด ์ œ์™ธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")

        # NA ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
        before_na_drop = len(df)
        df = df.dropna(subset=["date", "item", "price"])
        after_na_drop = len(df)
        if before_na_drop != after_na_drop:
            st.warning(f"NA ์ œ๊ฑฐ ์ค‘ {before_na_drop - after_na_drop}๊ฐœ ํ–‰์ด ์ œ์™ธ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
        
        df.sort_values("date", inplace=True)
        
        # ๋ฐ์ดํ„ฐ ๋‚ ์งœ ๋ฒ”์œ„ ํ™•์ธ
        if len(df) > 0:
            st.sidebar.write(f"๋ฐ์ดํ„ฐ ๋‚ ์งœ ๋ฒ”์œ„: {df['date'].min().strftime('%Y-%m-%d')} ~ {df['date'].max().strftime('%Y-%m-%d')}")
            st.sidebar.write(f"์ด ํ’ˆ๋ชฉ ์ˆ˜: {df['item'].nunique()}")
        else:
            st.error("์œ ํšจํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค!")
            
        return df
    except Exception as e:
        st.error(f"๋ฐ์ดํ„ฐ ๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}")
        st.stop()


@st.cache_data(show_spinner=False)
def get_items(df: pd.DataFrame):
    return sorted(df["item"].unique())


@st.cache_data(show_spinner=False, ttl=3600)
def fit_prophet(df: pd.DataFrame, horizon_end: str):
    # Make a copy and ensure we have data
    df = df.copy()
    df = df.dropna(subset=["date", "price"])
    
    # ์ค‘๋ณต ๋‚ ์งœ ์ฒ˜๋ฆฌ - ๋™์ผ ๋‚ ์งœ์— ์—ฌ๋Ÿฌ ๊ฐ’์ด ์žˆ์œผ๋ฉด ํ‰๊ท ๊ฐ’ ์‚ฌ์šฉ
    df = df.groupby("date")["price"].mean().reset_index()
    
    if len(df) < 2:
        st.warning(f"๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๊ฐ€ ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ์ธก์„ ์œ„ํ•ด์„œ๋Š” ์ตœ์†Œ 2๊ฐœ ์ด์ƒ์˜ ์œ ํšจ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. (ํ˜„์žฌ {len(df)}๊ฐœ)")
        return None, None
    
    # Convert to Prophet format
    prophet_df = df.rename(columns={"date": "ds", "price": "y"})
    
    try:
        # Fit the model
        m = Prophet(yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False)
        m.fit(prophet_df)
        
        # Generate future dates
        periods = max((pd.Timestamp(horizon_end) - df["date"].max()).days, 1)
        future = m.make_future_dataframe(periods=periods, freq="D")
        
        # Make predictions
        forecast = m.predict(future)
        return m, forecast
    except Exception as e:
        st.error(f"Prophet ๋ชจ๋ธ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜: {str(e)}")
        return None, None

# -------------------------------------------------
# LOAD DATA ---------------------------------------
# -------------------------------------------------
raw_df = load_data()

if len(raw_df) == 0:
    st.error("๋ฐ์ดํ„ฐ๊ฐ€ ๋น„์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ํŒŒ์ผ์„ ํ™•์ธํ•ด์ฃผ์„ธ์š”.")
    st.stop()

st.sidebar.header("๐Ÿ” ํ’ˆ๋ชฉ ์„ ํƒ")
selected_item = st.sidebar.selectbox("ํ’ˆ๋ชฉ", get_items(raw_df))
current_date = date.today()
st.sidebar.caption(f"์˜ค๋Š˜: {current_date}")

item_df = raw_df.query("item == @selected_item").copy()
if item_df.empty:
    st.error("์„ ํƒํ•œ ํ’ˆ๋ชฉ ๋ฐ์ดํ„ฐ ์—†์Œ")
    st.stop()

# -------------------------------------------------
# MACRO FORECAST 1996โ€‘2030 ------------------------
# -------------------------------------------------
st.header(f"๐Ÿ“ˆ {selected_item} ๊ฐ€๊ฒฉ ์˜ˆ์ธก ๋Œ€์‹œ๋ณด๋“œ")

# ๋ฐ์ดํ„ฐ ํ•„ํ„ฐ๋ง ๋กœ์ง ๊ฐœ์„  - ์‹œ๊ฐ„ ๋ฒ”์œ„๋ฅผ ์กฐ์ •ํ•˜์—ฌ ๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ ํฌํ•จ
try:
    macro_start_dt = pd.Timestamp(MACRO_START)
    # ๋ฐ์ดํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉด ์‹œ์ž‘ ๋‚ ์งœ๋ฅผ ์กฐ์ •
    if len(item_df[item_df["date"] >= macro_start_dt]) < 10:
        # ๊ฐ€์žฅ ์˜ค๋ž˜๋œ ๋‚ ์งœ๋ถ€ํ„ฐ ์‹œ์ž‘
        macro_start_dt = item_df["date"].min()
        st.info(f"์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์–ด ์‹œ์ž‘ ๋‚ ์งœ๋ฅผ {macro_start_dt.strftime('%Y-%m-%d')}๋กœ ์กฐ์ •ํ–ˆ์Šต๋‹ˆ๋‹ค.")
    
    macro_df = item_df[item_df["date"] >= macro_start_dt].copy()
except Exception as e:
    st.error(f"๋‚ ์งœ ํ•„ํ„ฐ๋ง ์˜ค๋ฅ˜: {str(e)}")
    macro_df = item_df.copy()  # ํ•„ํ„ฐ๋ง ์—†์ด ์ „์ฒด ๋ฐ์ดํ„ฐ ์‚ฌ์šฉ

# Add diagnostic info
with st.expander("๋ฐ์ดํ„ฐ ์ง„๋‹จ"):
    st.write(f"- ์ „์ฒด ๋ฐ์ดํ„ฐ ์ˆ˜: {len(item_df)}")
    st.write(f"- ๋ถ„์„ ๋ฐ์ดํ„ฐ ์ˆ˜: {len(macro_df)}")
    if len(macro_df) > 0:
        st.write(f"- ๊ธฐ๊ฐ„: {macro_df['date'].min().strftime('%Y-%m-%d')} ~ {macro_df['date'].max().strftime('%Y-%m-%d')}")
        st.dataframe(macro_df.head())
    else:
        st.write("๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")

if len(macro_df) < 2:
    st.warning(f"{selected_item}์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์ „์ฒด ๊ธฐ๊ฐ„ ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค.")
    fig = px.line(item_df, x="date", y="price", title=f"{selected_item} ๊ณผ๊ฑฐ ๊ฐ€๊ฒฉ")
    st.plotly_chart(fig, use_container_width=True)
else:
    try:
        with st.spinner("์žฅ๊ธฐ ์˜ˆ์ธก ๋ชจ๋ธ ์ƒ์„ฑ ์ค‘..."):
            m_macro, fc_macro = fit_prophet(macro_df, MACRO_END)
        
        if m_macro is not None and fc_macro is not None:
            fig_macro = px.line(fc_macro, x="ds", y="yhat", title="์žฅ๊ธฐ ์˜ˆ์ธก (1996โ€“2030)")
            fig_macro.add_scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="์‹ค์ œ ๊ฐ€๊ฒฉ")
            st.plotly_chart(fig_macro, use_container_width=True)
            
            latest_price = macro_df.iloc[-1]["price"]
            # 2030๋…„ ๋งˆ์ง€๋ง‰ ๋‚  ์ฐพ๊ธฐ
            target_date = pd.Timestamp(MACRO_END)
            close_dates = fc_macro.loc[(fc_macro["ds"] - target_date).abs().argsort()[:1], "ds"].values[0]
            macro_pred = fc_macro.loc[fc_macro["ds"] == close_dates, "yhat"].iloc[0]
            macro_pct = (macro_pred - latest_price) / latest_price * 100
            st.metric("2030 ์˜ˆ์ธก๊ฐ€", f"{macro_pred:,.0f}", f"{macro_pct:+.1f}%")
        else:
            st.warning("์˜ˆ์ธก ๋ชจ๋ธ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
            fig = px.line(item_df, x="date", y="price", title=f"{selected_item} ๊ณผ๊ฑฐ ๊ฐ€๊ฒฉ")
            st.plotly_chart(fig, use_container_width=True)
    except Exception as e:
        st.error(f"์žฅ๊ธฐ ์˜ˆ์ธก ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}")
        fig = px.line(item_df, x="date", y="price", title=f"{selected_item} ๊ณผ๊ฑฐ ๊ฐ€๊ฒฉ")
        st.plotly_chart(fig, use_container_width=True)

# -------------------------------------------------
# MICRO FORECAST 2024โ€‘2026 ------------------------
# -------------------------------------------------
st.subheader("๐Ÿ”Ž 2024โ€“2026 ๋‹จ๊ธฐ ์˜ˆ์ธก")

# ๋ฐ์ดํ„ฐ ํ•„ํ„ฐ๋ง ๋กœ์ง ๊ฐœ์„ 
try:
    micro_start_dt = pd.Timestamp(MICRO_START)
    # ๋ฐ์ดํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉด ์‹œ์ž‘ ๋‚ ์งœ๋ฅผ ์กฐ์ •
    if len(item_df[item_df["date"] >= micro_start_dt]) < 10:
        # ์ตœ๊ทผ 30% ๋ฐ์ดํ„ฐ๋งŒ ์‚ฌ์šฉ
        n = max(2, int(len(item_df) * 0.3))
        micro_df = item_df.sort_values("date").tail(n).copy()
        st.info(f"์ถฉ๋ถ„ํ•œ ์ตœ๊ทผ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์–ด ์ตœ๊ทผ {n}๊ฐœ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.")
    else:
        micro_df = item_df[item_df["date"] >= micro_start_dt].copy()
except Exception as e:
    st.error(f"๋‹จ๊ธฐ ์˜ˆ์ธก ๋ฐ์ดํ„ฐ ํ•„ํ„ฐ๋ง ์˜ค๋ฅ˜: {str(e)}")
    # ์ตœ๊ทผ 10๊ฐœ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ์‚ฌ์šฉ
    micro_df = item_df.sort_values("date").tail(10).copy()

if len(micro_df) < 2:
    st.warning(f"{MICRO_START} ์ดํ›„ ๋ฐ์ดํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.")
    fig = px.line(item_df, x="date", y="price", title=f"{selected_item} ์ตœ๊ทผ ๊ฐ€๊ฒฉ")
    st.plotly_chart(fig, use_container_width=True)
else:
    try:
        with st.spinner("๋‹จ๊ธฐ ์˜ˆ์ธก ๋ชจ๋ธ ์ƒ์„ฑ ์ค‘..."):
            m_micro, fc_micro = fit_prophet(micro_df, MICRO_END)
            
        if m_micro is not None and fc_micro is not None:
            fig_micro = px.line(fc_micro, x="ds", y="yhat", title="๋‹จ๊ธฐ ์˜ˆ์ธก (2024โ€“2026)")
            fig_micro.add_scatter(x=micro_df["date"], y=micro_df["price"], mode="lines", name="์‹ค์ œ ๊ฐ€๊ฒฉ")
            st.plotly_chart(fig_micro, use_container_width=True)
            
            latest_price = micro_df.iloc[-1]["price"]
            target_date = pd.Timestamp(MICRO_END)
            close_dates = fc_micro.loc[(fc_micro["ds"] - target_date).abs().argsort()[:1], "ds"].values[0]
            micro_pred = fc_micro.loc[fc_micro["ds"] == close_dates, "yhat"].iloc[0]
            micro_pct = (micro_pred - latest_price) / latest_price * 100
            st.metric("2026 ์˜ˆ์ธก๊ฐ€", f"{micro_pred:,.0f}", f"{micro_pct:+.1f}%")
        else:
            st.warning("๋‹จ๊ธฐ ์˜ˆ์ธก ๋ชจ๋ธ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
    except Exception as e:
        st.error(f"๋‹จ๊ธฐ ์˜ˆ์ธก ์˜ค๋ฅ˜: {str(e)}")

# -------------------------------------------------
# SEASONALITY & PATTERN ---------------------------
# -------------------------------------------------
with st.expander("๐Ÿ“† ์‹œ์ฆˆ๋„๋ฆฌํ‹ฐ & ํŒจํ„ด ์„ค๋ช…"):
    if 'm_micro' in locals() and m_micro is not None and 'fc_micro' in locals() and fc_micro is not None:
        try:
            comp_fig = m_micro.plot_components(fc_micro)
            st.pyplot(comp_fig)

            month_season = (fc_micro[["ds", "yearly"]]
                            .assign(month=lambda d: d.ds.dt.month)
                            .groupby("month")["yearly"].mean())
            st.markdown(
                f"**์—ฐ๊ฐ„ ํ”ผํฌ ์›”:** {int(month_season.idxmax())}์›”  \n"
                f"**์—ฐ๊ฐ„ ์ €์  ์›”:** {int(month_season.idxmin())}์›”  \n"
                f"**์—ฐ๊ฐ„ ๋ณ€๋™ํญ:** {month_season.max() - month_season.min():.1f}")
        except Exception as e:
            st.error(f"์‹œ์ฆˆ๋„๋ฆฌํ‹ฐ ๋ถ„์„ ์˜ค๋ฅ˜: {str(e)}")
    else:
        st.info("ํŒจํ„ด ๋ถ„์„์„ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")

# -------------------------------------------------
# CORRELATION HEATMAP -----------------------------
# -------------------------------------------------
st.subheader("๐Ÿงฎ ํ’ˆ๋ชฉ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„")

try:
    # ๋„ˆ๋ฌด ๋งŽ์€ ํ’ˆ๋ชฉ์ด ์žˆ์œผ๋ฉด ์ƒ์œ„ N๊ฐœ๋งŒ ์„ ํƒ
    items_to_corr = raw_df['item'].value_counts().head(30).index.tolist()
    if selected_item not in items_to_corr and selected_item in raw_df['item'].unique():
        items_to_corr.append(selected_item)
    
    filtered_df = raw_df[raw_df['item'].isin(items_to_corr)]
    
    monthly_pivot = (filtered_df.assign(month=lambda d: d.date.dt.to_period("M"))
                              .groupby(["month", "item"], as_index=False)["price"].mean()
                              .pivot(index="month", columns="item", values="price"))
    
    # ๊ฒฐ์ธก์น˜๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์€ ์—ด ์ œ๊ฑฐ
    threshold = 0.5  # 50% ์ด์ƒ ๊ฒฐ์ธก์น˜๊ฐ€ ์žˆ๋Š” ์—ด ์ œ๊ฑฐ
    monthly_pivot = monthly_pivot.loc[:, monthly_pivot.isnull().mean() < threshold]
    
    if monthly_pivot.shape[1] > 1:  # At least 2 items needed for correlation
        # ๊ฒฐ์ธก์น˜ ์ฒ˜๋ฆฌ
        monthly_pivot = monthly_pivot.fillna(method='ffill').fillna(method='bfill')
        
        # ์ƒ๊ด€๊ด€๊ณ„ ๊ณ„์‚ฐ
        corr = monthly_pivot.corr()
        
        # ์‹œ๊ฐํ™”
        fig, ax = plt.subplots(figsize=(12, 10))
        mask = np.triu(np.ones_like(corr, dtype=bool))
        
        # ์—ฌ๊ธฐ์„œ ํฐํŠธ ์„ค์ • ๋‹ค์‹œ ํ™•์ธ
        plt.title(f"{selected_item} ๊ด€๋ จ ์ƒ๊ด€๊ด€๊ณ„", fontsize=15)
        
        sns.heatmap(corr, mask=mask, annot=False, cmap="coolwarm", center=0,
                    square=True, linewidths=.5, cbar_kws={"shrink": .5})
        
        plt.xticks(rotation=45, ha='right', fontsize=8)
        plt.yticks(fontsize=8)

        # Highlight correlations with selected item
        if selected_item in corr.columns:
            item_corr = corr[selected_item].sort_values(ascending=False)
            top_corr = item_corr.drop(selected_item).head(5)
            bottom_corr = item_corr.drop(selected_item).tail(5)
            
            col1, col2 = st.columns(2)
            with col1:
                st.markdown(f"**{selected_item}์™€ ์ƒ๊ด€๊ด€๊ณ„ ๋†’์€ ํ’ˆ๋ชฉ**")
                for item, val in top_corr.items():
                    st.write(f"{item}: {val:.2f}")
            with col2:
                st.markdown(f"**{selected_item}์™€ ์ƒ๊ด€๊ด€๊ณ„ ๋‚ฎ์€ ํ’ˆ๋ชฉ**")
                for item, val in bottom_corr.items():
                    st.write(f"{item}: {val:.2f}")

        st.pyplot(fig)
    else:
        st.info("์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ์œ„ํ•œ ์ถฉ๋ถ„ํ•œ ํ’ˆ๋ชฉ ๋ฐ์ดํ„ฐ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.")
except Exception as e:
    st.error(f"์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„ ์˜ค๋ฅ˜: {str(e)}")
    st.write("์˜ค๋ฅ˜ ์ƒ์„ธ ์ •๋ณด:", str(e))

# -------------------------------------------------
# FOOTER ------------------------------------------
# -------------------------------------------------
st.markdown("---")
st.caption("ยฉ 2025 ํ’ˆ๋ชฉ๋ณ„ ๊ฐ€๊ฒฉ ์˜ˆ์ธก ์‹œ์Šคํ…œ | ๋ฐ์ดํ„ฐ ๋ถ„์„ ์ž๋™ํ™”")