Spaces:
Running
Running
File size: 7,711 Bytes
828f0f0 1acd6e1 dc2be38 1acd6e1 dc2be38 828f0f0 4fb476c dc2be38 828f0f0 3268778 828f0f0 3268778 828f0f0 3268778 828f0f0 3268778 1acd6e1 dc2be38 3268778 dc2be38 3268778 828f0f0 1acd6e1 4fb476c 1acd6e1 3268778 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 3268778 dc2be38 3268778 4fb476c 1acd6e1 4fb476c dc2be38 1acd6e1 3268778 dc2be38 3268778 4fb476c 1acd6e1 dc2be38 1acd6e1 3268778 dc2be38 1acd6e1 3268778 828f0f0 dc2be38 3268778 828f0f0 dc2be38 3268778 dc2be38 828f0f0 dc2be38 3268778 1acd6e1 3268778 1acd6e1 3268778 dc2be38 828f0f0 dc2be38 1acd6e1 828f0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import streamlit as st
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date
from pathlib import Path
# -------------------------------------------------
# CONFIG ------------------------------------------
# -------------------------------------------------
CSV_PATH = Path("price_data.csv")
PARQUET_PATH = Path("domae-202503.parquet") # 1996-2025-03 ์ผ๊ฐ/์๊ฐ ๊ฐ๊ฒฉ
MACRO_START, MACRO_END = "1996-01-01", "2030-12-31"
MICRO_START, MICRO_END = "2020-01-01", "2026-12-31"
st.set_page_config(page_title="ํ๋ชฉ๋ณ ๊ฐ๊ฒฉ ์์ธก", page_icon="๐", layout="wide")
# -------------------------------------------------
# UTILITIES ---------------------------------------
# -------------------------------------------------
DATE_CANDIDATES = {"date", "ds", "ymd", "๋ ์ง", "prce_reg_mm", "etl_ldg_dt"}
ITEM_CANDIDATES = {"item", "ํ๋ชฉ", "code", "category", "pdlt_nm", "spcs_nm"}
PRICE_CANDIDATES = {"price", "y", "value", "๊ฐ๊ฒฉ", "avrg_prce"}
def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
"""Rename date/item/price columns to date, item, price. Create composite item if needed."""
col_map = {}
for c in df.columns:
lc = c.lower()
if lc in DATE_CANDIDATES:
col_map[c] = "date"
elif lc in PRICE_CANDIDATES:
col_map[c] = "price"
elif lc in ITEM_CANDIDATES:
if "item" not in col_map.values():
col_map[c] = "item"
else:
col_map[c] = "species"
df = df.rename(columns=col_map)
if "date" not in df.columns and df.index.dtype.kind == "M":
df.reset_index(inplace=True)
df.rename(columns={df.columns[0]: "date"}, inplace=True)
if "date" in df.columns and df["date"].dtype == object:
sample = str(df["date"].iloc[0])
if sample.isdigit() and len(sample) in (6, 8):
df["date"] = pd.to_datetime(df["date"].astype(str).str[:6], format="%Y%m", errors="coerce")
if "item" not in df.columns and {"pdlt_nm", "spcs_nm"}.issubset(df.columns):
df["item"] = df["pdlt_nm"].str.strip() + "-" + df["spcs_nm"].str.strip()
if {"item", "species"}.issubset(df.columns):
df["item"] = df["item"].astype(str).str.strip() + "-" + df["species"].astype(str).str.strip()
df.drop(columns=["species"], inplace=True)
return df
@st.cache_data(show_spinner=False)
def load_data() -> pd.DataFrame:
if PARQUET_PATH.exists():
df = pd.read_parquet(PARQUET_PATH)
elif CSV_PATH.exists():
df = pd.read_csv(CSV_PATH)
else:
st.error("๐พ price_data.csv ๋๋ domae-202503.parquet ํ์ผ์ ์ฐพ์ ์ ์์ต๋๋ค.")
st.stop()
df = _standardize_columns(df)
missing = {c for c in ["date", "item", "price"] if c not in df.columns}
if missing:
st.error(f"ํ์ ์ปฌ๋ผ ๋๋ฝ: {', '.join(missing)} โ ํ์ผ ์ปฌ๋ผ๋ช
์ ํ์ธํ์ธ์.")
st.stop()
df["date"] = pd.to_datetime(df["date"], errors="coerce")
df = df.dropna(subset=["date", "item", "price"])
df.sort_values("date", inplace=True)
return df
@st.cache_data(show_spinner=False)
def get_items(df: pd.DataFrame):
return sorted(df["item"].unique())
@st.cache_data(show_spinner=False)
def fit_prophet(df: pd.DataFrame, horizon_end: str):
m = Prophet(yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False)
m.fit(df.rename(columns={"date": "ds", "price": "y"}))
periods = (pd.Timestamp(horizon_end) - df["date"].max()).days
future = m.make_future_dataframe(periods=periods, freq="D")
forecast = m.predict(future)
return m, forecast
# -------------------------------------------------
# LOAD DATA ---------------------------------------
# -------------------------------------------------
raw_df = load_data()
st.sidebar.header("๐ ํ๋ชฉ ์ ํ")
selected_item = st.sidebar.selectbox("ํ๋ชฉ", get_items(raw_df))
current_date = date.today()
st.sidebar.caption(f"์ค๋: {current_date}")
item_df = raw_df.query("item == @selected_item").copy()
if item_df.empty:
st.error("์ ํํ ํ๋ชฉ ๋ฐ์ดํฐ ์์")
st.stop()
# -------------------------------------------------
# MACRO FORECAST 1996-2030 ------------------------
# -------------------------------------------------
st.header(f"๐ {selected_item} ๊ฐ๊ฒฉ ์์ธก ๋์๋ณด๋")
macro_df = item_df[item_df["date"] >= MACRO_START]
m_macro, fc_macro = fit_prophet(macro_df, MACRO_END)
fig_macro = px.line(fc_macro, x="ds", y="yhat", title="Macro Forecast 1996โ2030")
fig_macro.add_scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_macro, use_container_width=True)
latest_price = macro_df.iloc[-1]["price"]
macro_pred = fc_macro.loc[fc_macro["ds"] == MACRO_END, "yhat"].iloc[0]
macro_pct = (macro_pred - latest_price) / latest_price * 100
st.metric("2030 ์์ธก๊ฐ", f"{macro_pred:,.0f}", f"{macro_pct:+.1f}%")
# -------------------------------------------------
# MICRO FORECAST 2024-2026 ------------------------
# -------------------------------------------------
st.subheader("๐ 2024โ2026 ๋จ๊ธฐ ์์ธก")
micro_df = item_df[item_df["date"] >= MICRO_START]
m_micro, fc_micro = fit_prophet(micro_df, MICRO_END)
fig_micro = px.line(fc_micro, x="ds", y="yhat", title="Micro Forecast 2024โ2026")
fig_micro.add_scatter(x=micro_df["date"], y=micro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_micro, use_container_width=True)
micro_pred = fc_micro.loc[fc_micro["ds"] == MICRO_END, "yhat"].iloc[0]
micro_pct = (micro_pred - latest_price) / latest_price * 100
st.metric("2026 ์์ธก๊ฐ", f"{micro_pred:,.0f}", f"{micro_pct:+.1f}%")
# -------------------------------------------------
# SEASONALITY & PATTERN ---------------------------
# -------------------------------------------------
with st.expander("๐ ์์ฆ๋๋ฆฌํฐ & ํจํด ์ค๋ช
"):
comp_fig = m_micro.plot_components(fc_micro)
st.pyplot(comp_fig)
month_season = (
fc_micro[["ds", "yearly"]]
.assign(month=lambda d: d.ds.dt.month)
.groupby("month")["yearly"].mean()
)
st.markdown(
f"**์ฐ๊ฐ ํผํฌ ์:** {int(month_season.idxmax())}์ \n"
f"**์ฐ๊ฐ ์ ์ ์:** {int(month_season.idxmin())}์ \n"
f"**์ฐ๊ฐ ๋ณ๋ํญ:** {month_season.max() - month_season.min():.1f}"
)
# -------------------------------------------------
# CORRELATION HEATMAP -----------------------------
# -------------------------------------------------
st.subheader("๐งฎ ํ๋ชฉ ๊ฐ ์๊ด๊ด๊ณ")
monthly_pivot = (
raw_df.assign(month=lambda d: d.date.dt.to_period("M"))
.groupby(["month", "item"], as_index=False)["price"]
.mean()
.pivot(index="month", columns="item", values="price")
)
corr = monthly_pivot.corr()
fig, ax = plt.subplots(figsize=(12, 10))
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, mask=mask, cmap="RdBu_r", center=0, linewidths=.5, ax=ax)
st.pyplot(fig)
st.info("๋นจ๊ฐ ์์ญ: ๊ฐ๊ฒฉ ๋์กฐํ / ํ๋ ์์ญ: ๋์ฒด์ฌ ๊ฐ๋ฅ์ฑ")
# -------------------------------------------------
# VOLATILITY --------------------------------------
# -------------------------------------------------
st.subheader("๐ 30์ผ ์ด๋ ํ์คํธ์ฐจ (๊ฐ๊ฒฉ ๋ณ๋์ฑ)")
vol = (
item_df.set_index("date")["price"]
.rolling(30)
.std()
.dropna()
.reset_index()
)
fig_vol = px.area(vol, x="date", y="price", title="Rolling 30D Std Dev")
st.plotly_chart(fig_vol, use_container_width=True)
st.caption("๋ฐ์ดํฐ: domae-202503.parquet ยท Prophet ์์ธก ยท Streamlit ๋์๋ณด๋")
|