File size: 7,711 Bytes
828f0f0
1acd6e1
 
 
 
 
 
 
 
dc2be38
1acd6e1
dc2be38
 
 
 
828f0f0
4fb476c
 
 
 
 
dc2be38
 
 
828f0f0
 
 
3268778
 
828f0f0
3268778
 
 
828f0f0
3268778
 
 
828f0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268778
 
 
1acd6e1
dc2be38
 
 
 
 
 
3268778
 
 
 
 
 
 
dc2be38
3268778
 
828f0f0
1acd6e1
 
 
 
 
 
 
4fb476c
1acd6e1
 
 
3268778
 
1acd6e1
 
 
dc2be38
 
 
 
 
 
 
1acd6e1
dc2be38
1acd6e1
dc2be38
1acd6e1
dc2be38
1acd6e1
 
dc2be38
3268778
dc2be38
 
 
3268778
4fb476c
 
1acd6e1
 
 
4fb476c
dc2be38
 
 
1acd6e1
3268778
 
 
dc2be38
3268778
4fb476c
 
 
1acd6e1
 
 
dc2be38
 
 
1acd6e1
3268778
 
 
dc2be38
1acd6e1
 
3268778
828f0f0
 
 
 
 
dc2be38
3268778
 
828f0f0
 
dc2be38
3268778
 
 
dc2be38
828f0f0
 
 
 
 
 
dc2be38
 
 
3268778
1acd6e1
 
 
3268778
1acd6e1
3268778
 
 
dc2be38
828f0f0
 
 
 
 
 
 
dc2be38
1acd6e1
 
828f0f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

import streamlit as st
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date
from pathlib import Path

# -------------------------------------------------
# CONFIG ------------------------------------------
# -------------------------------------------------
CSV_PATH = Path("price_data.csv")
PARQUET_PATH = Path("domae-202503.parquet")  # 1996-2025-03 ์ผ๊ฐ„/์›”๊ฐ„ ๊ฐ€๊ฒฉ
MACRO_START, MACRO_END = "1996-01-01", "2030-12-31"
MICRO_START, MICRO_END = "2020-01-01", "2026-12-31"

st.set_page_config(page_title="ํ’ˆ๋ชฉ๋ณ„ ๊ฐ€๊ฒฉ ์˜ˆ์ธก", page_icon="๐Ÿ“ˆ", layout="wide")

# -------------------------------------------------
# UTILITIES ---------------------------------------
# -------------------------------------------------
DATE_CANDIDATES = {"date", "ds", "ymd", "๋‚ ์งœ", "prce_reg_mm", "etl_ldg_dt"}
ITEM_CANDIDATES = {"item", "ํ’ˆ๋ชฉ", "code", "category", "pdlt_nm", "spcs_nm"}
PRICE_CANDIDATES = {"price", "y", "value", "๊ฐ€๊ฒฉ", "avrg_prce"}

def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
    """Rename date/item/price columns to date, item, price. Create composite item if needed."""
    col_map = {}
    for c in df.columns:
        lc = c.lower()
        if lc in DATE_CANDIDATES:
            col_map[c] = "date"
        elif lc in PRICE_CANDIDATES:
            col_map[c] = "price"
        elif lc in ITEM_CANDIDATES:
            if "item" not in col_map.values():
                col_map[c] = "item"
            else:
                col_map[c] = "species"
    df = df.rename(columns=col_map)

    if "date" not in df.columns and df.index.dtype.kind == "M":
        df.reset_index(inplace=True)
        df.rename(columns={df.columns[0]: "date"}, inplace=True)

    if "date" in df.columns and df["date"].dtype == object:
        sample = str(df["date"].iloc[0])
        if sample.isdigit() and len(sample) in (6, 8):
            df["date"] = pd.to_datetime(df["date"].astype(str).str[:6], format="%Y%m", errors="coerce")

    if "item" not in df.columns and {"pdlt_nm", "spcs_nm"}.issubset(df.columns):
        df["item"] = df["pdlt_nm"].str.strip() + "-" + df["spcs_nm"].str.strip()

    if {"item", "species"}.issubset(df.columns):
        df["item"] = df["item"].astype(str).str.strip() + "-" + df["species"].astype(str).str.strip()
        df.drop(columns=["species"], inplace=True)

    return df

@st.cache_data(show_spinner=False)
def load_data() -> pd.DataFrame:
    if PARQUET_PATH.exists():
        df = pd.read_parquet(PARQUET_PATH)
    elif CSV_PATH.exists():
        df = pd.read_csv(CSV_PATH)
    else:
        st.error("๐Ÿ’พ price_data.csv ๋˜๋Š” domae-202503.parquet ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
        st.stop()

    df = _standardize_columns(df)
    missing = {c for c in ["date", "item", "price"] if c not in df.columns}
    if missing:
        st.error(f"ํ•„์ˆ˜ ์ปฌ๋Ÿผ ๋ˆ„๋ฝ: {', '.join(missing)} โ€” ํŒŒ์ผ ์ปฌ๋Ÿผ๋ช…์„ ํ™•์ธํ•˜์„ธ์š”.")
        st.stop()

    df["date"] = pd.to_datetime(df["date"], errors="coerce")
    df = df.dropna(subset=["date", "item", "price"])
    df.sort_values("date", inplace=True)
    return df

@st.cache_data(show_spinner=False)
def get_items(df: pd.DataFrame):
    return sorted(df["item"].unique())

@st.cache_data(show_spinner=False)
def fit_prophet(df: pd.DataFrame, horizon_end: str):
    m = Prophet(yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False)
    m.fit(df.rename(columns={"date": "ds", "price": "y"}))
    periods = (pd.Timestamp(horizon_end) - df["date"].max()).days
    future = m.make_future_dataframe(periods=periods, freq="D")
    forecast = m.predict(future)
    return m, forecast

# -------------------------------------------------
# LOAD DATA ---------------------------------------
# -------------------------------------------------
raw_df = load_data()

st.sidebar.header("๐Ÿ” ํ’ˆ๋ชฉ ์„ ํƒ")
selected_item = st.sidebar.selectbox("ํ’ˆ๋ชฉ", get_items(raw_df))
current_date = date.today()
st.sidebar.caption(f"์˜ค๋Š˜: {current_date}")

item_df = raw_df.query("item == @selected_item").copy()
if item_df.empty:
    st.error("์„ ํƒํ•œ ํ’ˆ๋ชฉ ๋ฐ์ดํ„ฐ ์—†์Œ")
    st.stop()

# -------------------------------------------------
# MACRO FORECAST 1996-2030 ------------------------
# -------------------------------------------------
st.header(f"๐Ÿ“ˆ {selected_item} ๊ฐ€๊ฒฉ ์˜ˆ์ธก ๋Œ€์‹œ๋ณด๋“œ")
macro_df = item_df[item_df["date"] >= MACRO_START]

m_macro, fc_macro = fit_prophet(macro_df, MACRO_END)
fig_macro = px.line(fc_macro, x="ds", y="yhat", title="Macro Forecast 1996โ€“2030")
fig_macro.add_scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_macro, use_container_width=True)

latest_price = macro_df.iloc[-1]["price"]
macro_pred = fc_macro.loc[fc_macro["ds"] == MACRO_END, "yhat"].iloc[0]
macro_pct = (macro_pred - latest_price) / latest_price * 100
st.metric("2030 ์˜ˆ์ธก๊ฐ€", f"{macro_pred:,.0f}", f"{macro_pct:+.1f}%")

# -------------------------------------------------
# MICRO FORECAST 2024-2026 ------------------------
# -------------------------------------------------
st.subheader("๐Ÿ”Ž 2024โ€“2026 ๋‹จ๊ธฐ ์˜ˆ์ธก")

micro_df = item_df[item_df["date"] >= MICRO_START]
m_micro, fc_micro = fit_prophet(micro_df, MICRO_END)
fig_micro = px.line(fc_micro, x="ds", y="yhat", title="Micro Forecast 2024โ€“2026")
fig_micro.add_scatter(x=micro_df["date"], y=micro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_micro, use_container_width=True)

micro_pred = fc_micro.loc[fc_micro["ds"] == MICRO_END, "yhat"].iloc[0]
micro_pct = (micro_pred - latest_price) / latest_price * 100
st.metric("2026 ์˜ˆ์ธก๊ฐ€", f"{micro_pred:,.0f}", f"{micro_pct:+.1f}%")

# -------------------------------------------------
# SEASONALITY & PATTERN ---------------------------
# -------------------------------------------------
with st.expander("๐Ÿ“† ์‹œ์ฆˆ๋„๋ฆฌํ‹ฐ & ํŒจํ„ด ์„ค๋ช…"):
    comp_fig = m_micro.plot_components(fc_micro)
    st.pyplot(comp_fig)

    month_season = (
        fc_micro[["ds", "yearly"]]
        .assign(month=lambda d: d.ds.dt.month)
        .groupby("month")["yearly"].mean()
    )
    st.markdown(
        f"**์—ฐ๊ฐ„ ํ”ผํฌ ์›”:** {int(month_season.idxmax())}์›”  \n"
        f"**์—ฐ๊ฐ„ ์ €์  ์›”:** {int(month_season.idxmin())}์›”  \n"
        f"**์—ฐ๊ฐ„ ๋ณ€๋™ํญ:** {month_season.max() - month_season.min():.1f}"
    )

# -------------------------------------------------
# CORRELATION HEATMAP -----------------------------
# -------------------------------------------------
st.subheader("๐Ÿงฎ ํ’ˆ๋ชฉ ๊ฐ„ ์ƒ๊ด€๊ด€๊ณ„")
monthly_pivot = (
    raw_df.assign(month=lambda d: d.date.dt.to_period("M"))
    .groupby(["month", "item"], as_index=False)["price"]
    .mean()
    .pivot(index="month", columns="item", values="price")
)

corr = monthly_pivot.corr()
fig, ax = plt.subplots(figsize=(12, 10))
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, mask=mask, cmap="RdBu_r", center=0, linewidths=.5, ax=ax)
st.pyplot(fig)

st.info("๋นจ๊ฐ„ ์˜์—ญ: ๊ฐ€๊ฒฉ ๋™์กฐํ™” / ํŒŒ๋ž€ ์˜์—ญ: ๋Œ€์ฒด์žฌ ๊ฐ€๋Šฅ์„ฑ")

# -------------------------------------------------
# VOLATILITY --------------------------------------
# -------------------------------------------------
st.subheader("๐Ÿ“Š 30์ผ ์ด๋™ ํ‘œ์ค€ํŽธ์ฐจ (๊ฐ€๊ฒฉ ๋ณ€๋™์„ฑ)")
vol = (
    item_df.set_index("date")["price"]
    .rolling(30)
    .std()
    .dropna()
    .reset_index()
)
fig_vol = px.area(vol, x="date", y="price", title="Rolling 30D Std Dev")
st.plotly_chart(fig_vol, use_container_width=True)

st.caption("๋ฐ์ดํ„ฐ: domae-202503.parquet ยท Prophet ์˜ˆ์ธก ยท Streamlit ๋Œ€์‹œ๋ณด๋“œ")