Spaces:
Running
Running
File size: 5,351 Bytes
1acd6e1 dc2be38 1acd6e1 dc2be38 4fb476c dc2be38 1acd6e1 dc2be38 1acd6e1 4fb476c 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 4fb476c 1acd6e1 4fb476c dc2be38 1acd6e1 dc2be38 4fb476c 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 4fb476c dc2be38 4fb476c dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 1acd6e1 dc2be38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import streamlit as st
import pandas as pd
import numpy as np
from prophet import Prophet
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date
from pathlib import Path
# -------------------------------------------------
# CONFIG ------------------------------------------
# -------------------------------------------------
CSV_PATH = Path("price_data.csv")
PARQUET_PATH = Path("domae-202503.parquet") # 1996โ1993-03 ๊ฐ๊ฒฉ ๋ฐ์ดํฐ
MACRO_START, MACRO_END = "1996-01-01", "2030-12-31"
MICRO_START, MICRO_END = "2020-01-01", "2026-12-31"
st.set_page_config(page_title="ํ๋ชฉ๋ณ ๊ฐ๊ฒฉ ์์ธก", page_icon="๐", layout="wide")
# -------------------------------------------------
# UTILITIES ---------------------------------------
# -------------------------------------------------
@st.cache_data(show_spinner=False)
def load_data() -> pd.DataFrame:
"""Load price data from Parquet if available, else CSV."""
if PARQUET_PATH.exists():
df = pd.read_parquet(PARQUET_PATH)
elif CSV_PATH.exists():
df = pd.read_csv(CSV_PATH)
else:
st.error("๋ฐ์ดํฐ ํ์ผ์ ์ฐพ์ ์ ์์ต๋๋ค. price_data.csv ๋๋ domae-202503.parquet" )
st.stop()
# ํ์คํ
df["date"] = pd.to_datetime(df["date"])
df.sort_values("date", inplace=True)
return df
@st.cache_data(show_spinner=False)
def get_items(df: pd.DataFrame):
return sorted(df["item"].unique())
@st.cache_data(show_spinner=False)
def fit_prophet(df: pd.DataFrame, horizon_end: str):
m = Prophet(yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False)
m.fit(df.rename(columns={"date": "ds", "price": "y"}))
future = m.make_future_dataframe(periods=(pd.Timestamp(horizon_end) - df["date"].max()).days, freq="D")
forecast = m.predict(future)
return m, forecast
# -------------------------------------------------
# LOAD DATA ---------------------------------------
# -------------------------------------------------
raw_df = load_data()
st.sidebar.header("๐ ํ๋ชฉ ์ ํ")
selected_item = st.sidebar.selectbox("ํ๋ชฉ", get_items(raw_df))
current_date = date.today()
st.sidebar.caption(f"์ค๋: {current_date}")
item_df = raw_df.query("item == @selected_item").copy()
if item_df.empty:
st.error("์ ํํ ํ๋ชฉ ๋ฐ์ดํฐ ์์")
st.stop()
# -------------------------------------------------
# PLOTS -------------------------------------------
# -------------------------------------------------
st.header(f"๐ {selected_item} ๊ฐ๊ฒฉ ์์ธก ๋์๋ณด๋")
# Macro forecast 1996โ2030
macro_df = item_df[item_df["date"] >= MACRO_START]
m_macro, fc_macro = fit_prophet(macro_df, MACRO_END)
fig_macro = px.line(fc_macro, x="ds", y="yhat", title="Macro Forecast 1996โ2030")
fig_macro.add_scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_macro, use_container_width=True)
latest_price = macro_df.iloc[-1]["price"]
macro_pred = fc_macro.loc[fc_macro["ds"] == MACRO_END, "yhat"].iloc[0]
macro_pct = (macro_pred - latest_price) / latest_price * 100
st.metric("2030 ์์ธก๊ฐ", f"{macro_pred:,.0f}", f"{macro_pct:+.1f}%")
# Micro forecast 2024โ2026
st.subheader("๐ 2024โ2026 ๋จ๊ธฐ ์์ธก")
micro_df = item_df[item_df["date"] >= MICRO_START]
m_micro, fc_micro = fit_prophet(micro_df, MICRO_END)
fig_micro = px.line(fc_micro, x="ds", y="yhat", title="Micro Forecast 2024โ2026")
fig_micro.add_scatter(x=micro_df["date"], y=micro_df["price"], mode="lines", name="Actual")
st.plotly_chart(fig_micro, use_container_width=True)
micro_pred = fc_micro.loc[fc_micro["ds"] == MICRO_END, "yhat"].iloc[0]
micro_pct = (micro_pred - latest_price) / latest_price * 100
st.metric("2026 ์์ธก๊ฐ", f"{micro_pred:,.0f}", f"{micro_pct:+.1f}%")
# Seasonality components
with st.expander("๐ ์์ฆ๋๋ฆฌํฐ & ํจํด ์ค๋ช
"):
comp_fig = m_micro.plot_components(fc_micro)
st.pyplot(comp_fig)
month_season = (fc_micro[["ds", "yearly"]]
.assign(month=lambda d: d.ds.dt.month)
.groupby("month")["yearly"].mean())
st.markdown(
f"**์ฐ๊ฐ ํผํฌ ์:** {int(month_season.idxmax())}์\n\n"
f"**์ฐ๊ฐ ์ ์ ์:** {int(month_season.idxmin())}์\n\n"
f"**์ฐ๊ฐ ๋ณ๋ํญ:** {month_season.max() - month_season.min():.1f}")
# Correlation heatmap
st.subheader("๐งฎ ํ๋ชฉ ๊ฐ ์๊ด๊ด๊ณ")
monthly_pivot = (raw_df.assign(month=lambda d: d.date.dt.to_period("M"))
.groupby(["month", "item"], as_index=False)["price"].mean()
.pivot(index="month", columns="item", values="price"))
corr = monthly_pivot.corr()
mask = np.triu(np.ones_like(corr, dtype=bool))
fig, ax = plt.subplots(figsize=(12, 10))
sns.heatmap(corr, mask=mask, cmap="RdBu_r", center=0, linewidths=.5, ax=ax)
st.pyplot(fig)
st.info("๋นจ๊ฐ ์์ญ: ๊ฐ๊ฒฉ ๋์กฐํ / ํ๋ ์์ญ: ๋์ฒด์ฌ ๊ฐ๋ฅ์ฑ.")
# Volatility Chart
st.subheader("๐ 30์ผ ์ด๋ ํ์คํธ์ฐจ (๊ฐ๊ฒฉ ๋ณ๋์ฑ)")
vol = item_df.set_index("date")["price"].rolling(30).std().dropna().reset_index()
fig_vol = px.area(vol, x="date", y="price", title="Rolling 30D Std Dev")
st.plotly_chart(fig_vol, use_container_width=True)
st.caption("๋ฐ์ดํฐ: domae-202503.parquet ยท Prophet ์์ธก ยท Streamlit ๋์๋ณด๋")
|