Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -148,7 +148,6 @@ def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
|
148 |
df.reset_index(inplace=True)
|
149 |
df.rename(columns={df.columns[0]: "date"}, inplace=True)
|
150 |
|
151 |
-
|
152 |
# ββ convert YYYYMM string to datetime ββββββββββββββββββββββββββββββββββββββ
|
153 |
if "date" in df.columns and pd.api.types.is_object_dtype(df["date"]):
|
154 |
if len(df) > 0:
|
@@ -172,7 +171,6 @@ def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
|
172 |
except:
|
173 |
# μ€ν¨ μ μΌλ° λ³ν μλ
|
174 |
df["date"] = pd.to_datetime(df["date"], errors="coerce")
|
175 |
-
|
176 |
|
177 |
# ββ build item from pdlt_nm + spcs_nm if needed ββββββββββββββββββββ
|
178 |
if "item" not in df.columns and {"pdlt_nm", "spcs_nm"}.issubset(df.columns):
|
@@ -185,8 +183,6 @@ def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
|
185 |
|
186 |
return df
|
187 |
|
188 |
-
|
189 |
-
|
190 |
@st.cache_data(show_spinner=False)
|
191 |
def load_data() -> pd.DataFrame:
|
192 |
"""Load price data from CSV file."""
|
@@ -254,47 +250,6 @@ def load_data() -> pd.DataFrame:
|
|
254 |
st.code(traceback.format_exc())
|
255 |
st.stop()
|
256 |
|
257 |
-
# λ©μΈ μ½λμ λ€μ λΆλΆ μΆκ° - νλͺ©λ³ λ°μ΄ν° μ νμΈ
|
258 |
-
item_df = raw_df.query("item == @selected_item").copy()
|
259 |
-
if item_df.empty:
|
260 |
-
st.error(f"μ νν νλͺ© '{selected_item}' λ°μ΄ν°κ° μμ΅λλ€.")
|
261 |
-
st.stop()
|
262 |
-
elif len(item_df) < 2:
|
263 |
-
st.warning(f"μ νν νλͺ© '{selected_item}' λ°μ΄ν°κ° λ무 μ μ΅λλ€ (λ°μ΄ν° μ: {len(item_df)}). μμΈ‘μ΄ λΆμ νν μ μμ΅λλ€.")
|
264 |
-
else:
|
265 |
-
st.success(f"μ νν νλͺ© '{selected_item}'μ λν΄ {len(item_df)}κ°μ λ°μ΄ν°κ° μμ΅λλ€.")
|
266 |
-
|
267 |
-
# μλμ²λΌ μ₯κΈ° μμΈ‘ λΆλΆ μμ
|
268 |
-
try:
|
269 |
-
# λ°μ΄ν° νν°λ§ λ‘μ§ κ°μ
|
270 |
-
macro_start_dt = pd.Timestamp("1996-01-01")
|
271 |
-
|
272 |
-
# μ΅μ λ°μ΄ν° μ νμΈ
|
273 |
-
macro_df = item_df.copy() # μ 체 λ°μ΄ν° μ¬μ©
|
274 |
-
|
275 |
-
# λ°μ΄ν°κ° λ§€μ° μ μ κ²½μ° κ²½κ³ νμ
|
276 |
-
if len(macro_df) < 5:
|
277 |
-
st.warning(f"{selected_item}μ λν λ°μ΄ν°κ° λ§€μ° μ μ΅λλ€ (λ°μ΄ν° μ: {len(macro_df)}). μμΈ‘μ΄ λΆμ νν μ μμ΅λλ€.")
|
278 |
-
|
279 |
-
# μ§λ¨ μ 보 νμ
|
280 |
-
with st.expander("λ°μ΄ν° μ§λ¨"):
|
281 |
-
st.write(f"- μ 체 λ°μ΄ν° μ: {len(item_df)}")
|
282 |
-
st.write(f"- λΆμ λ°μ΄ν° μ: {len(macro_df)}")
|
283 |
-
if len(macro_df) > 0:
|
284 |
-
st.write(f"- κΈ°κ°: {macro_df['date'].min().strftime('%Y-%m-%d')} ~ {macro_df['date'].max().strftime('%Y-%m-%d')}")
|
285 |
-
st.dataframe(macro_df.head())
|
286 |
-
else:
|
287 |
-
st.write("λ°μ΄ν°κ° μμ΅λλ€.")
|
288 |
-
|
289 |
-
# λ°μ΄ν° νν°λ§ 쑰건 μν - μ΅μ 2κ° μ΄μμ΄λ©΄ μ§ν
|
290 |
-
if len(macro_df) >= 2:
|
291 |
-
# κΈ°μ‘΄ μ½λ (λͺ¨λΈ νμ΅ λ° μκ°ν)
|
292 |
-
with st.spinner("μ₯κΈ° μμΈ‘ λͺ¨λΈ μμ± μ€..."):
|
293 |
-
if use_ensemble:
|
294 |
-
fc_macro = fit_ensemble_model(macro_df, selected_item, MACRO_END)
|
295 |
-
else:
|
296 |
-
fc_macro = fit_optimal_model(macro_df, selected_item, MACRO_END)
|
297 |
-
|
298 |
@st.cache_data(show_spinner=False)
|
299 |
def get_items(df: pd.DataFrame):
|
300 |
return sorted(df["item"].unique())
|
@@ -1217,6 +1172,12 @@ item_df = raw_df.query("item == @selected_item").copy()
|
|
1217 |
if item_df.empty:
|
1218 |
st.error("μ νν νλͺ© λ°μ΄ν° μμ")
|
1219 |
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
1220 |
|
1221 |
# -------------------------------------------------
|
1222 |
# MACRO FORECAST 1996β2030 ------------------------
|
|
|
148 |
df.reset_index(inplace=True)
|
149 |
df.rename(columns={df.columns[0]: "date"}, inplace=True)
|
150 |
|
|
|
151 |
# ββ convert YYYYMM string to datetime ββββββββββββββββββββββββββββββββββββββ
|
152 |
if "date" in df.columns and pd.api.types.is_object_dtype(df["date"]):
|
153 |
if len(df) > 0:
|
|
|
171 |
except:
|
172 |
# μ€ν¨ μ μΌλ° λ³ν μλ
|
173 |
df["date"] = pd.to_datetime(df["date"], errors="coerce")
|
|
|
174 |
|
175 |
# ββ build item from pdlt_nm + spcs_nm if needed ββββββββββββββββββββ
|
176 |
if "item" not in df.columns and {"pdlt_nm", "spcs_nm"}.issubset(df.columns):
|
|
|
183 |
|
184 |
return df
|
185 |
|
|
|
|
|
186 |
@st.cache_data(show_spinner=False)
|
187 |
def load_data() -> pd.DataFrame:
|
188 |
"""Load price data from CSV file."""
|
|
|
250 |
st.code(traceback.format_exc())
|
251 |
st.stop()
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
@st.cache_data(show_spinner=False)
|
254 |
def get_items(df: pd.DataFrame):
|
255 |
return sorted(df["item"].unique())
|
|
|
1172 |
if item_df.empty:
|
1173 |
st.error("μ νν νλͺ© λ°μ΄ν° μμ")
|
1174 |
st.stop()
|
1175 |
+
|
1176 |
+
# λ°μ΄ν° μ κ²μ¬
|
1177 |
+
if len(item_df) < 2:
|
1178 |
+
st.warning(f"μ νν νλͺ© '{selected_item}' λ°μ΄ν°κ° λ무 μ μ΅λλ€ (λ°μ΄ν° μ: {len(item_df)}). μμΈ‘μ΄ λΆμ νν μ μμ΅λλ€.")
|
1179 |
+
else:
|
1180 |
+
st.success(f"μ νν νλͺ© '{selected_item}'μ λν΄ {len(item_df)}κ°μ λ°μ΄ν°κ° μμ΅λλ€.")
|
1181 |
|
1182 |
# -------------------------------------------------
|
1183 |
# MACRO FORECAST 1996β2030 ------------------------
|