Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,27 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
-
from prophet import Prophet
|
| 5 |
-
import plotly.express as px
|
| 6 |
-
import plotly.graph_objects as go
|
| 7 |
import matplotlib.pyplot as plt
|
|
|
|
| 8 |
from datetime import date
|
| 9 |
from pathlib import Path
|
| 10 |
import matplotlib.font_manager as fm
|
| 11 |
import matplotlib as mpl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# -------------------------------------------------
|
| 14 |
# CONFIG ------------------------------------------
|
|
@@ -31,6 +44,77 @@ else:
|
|
| 31 |
|
| 32 |
st.set_page_config(page_title="ํ๋ชฉ๋ณ ๊ฐ๊ฒฉ ์์ธก", page_icon="๐", layout="wide")
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# -------------------------------------------------
|
| 35 |
# UTILITIES ---------------------------------------
|
| 36 |
# -------------------------------------------------
|
|
@@ -38,7 +122,6 @@ DATE_CANDIDATES = {"date", "ds", "ymd", "๋ ์ง", "prce_reg_mm", "etl_ldg_dt"}
|
|
| 38 |
ITEM_CANDIDATES = {"item", "ํ๋ชฉ", "code", "category", "pdlt_nm", "spcs_nm"}
|
| 39 |
PRICE_CANDIDATES = {"price", "y", "value", "๊ฐ๊ฒฉ", "avrg_prce"}
|
| 40 |
|
| 41 |
-
|
| 42 |
def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
| 43 |
"""Standardize column names to date/item/price and deduplicate."""
|
| 44 |
col_map = {}
|
|
@@ -87,7 +170,6 @@ def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 87 |
|
| 88 |
return df
|
| 89 |
|
| 90 |
-
|
| 91 |
@st.cache_data(show_spinner=False)
|
| 92 |
def load_data() -> pd.DataFrame:
|
| 93 |
"""Load price data from CSV file."""
|
|
@@ -142,102 +224,910 @@ def load_data() -> pd.DataFrame:
|
|
| 142 |
return df
|
| 143 |
except Exception as e:
|
| 144 |
st.error(f"๋ฐ์ดํฐ ๋ก๋ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 145 |
-
# ์ค๋ฅ ์์ธ ์ ๋ณด ํ์
|
| 146 |
import traceback
|
| 147 |
st.code(traceback.format_exc())
|
| 148 |
st.stop()
|
| 149 |
|
| 150 |
-
|
| 151 |
@st.cache_data(show_spinner=False)
|
| 152 |
def get_items(df: pd.DataFrame):
|
| 153 |
return sorted(df["item"].unique())
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
|
|
|
|
|
|
|
|
|
| 156 |
@st.cache_data(show_spinner=False, ttl=3600)
|
| 157 |
-
def
|
| 158 |
-
"""
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
monthly: ์ ๋จ์ ์์ธก ์ฌ๋ถ
|
| 165 |
-
changepoint_prior_scale: ๋ณํ์ ๋ฏผ๊ฐ๋ (๋ฎ์์๋ก ๊ณผ์ ํฉ ๊ฐ์)
|
| 166 |
-
"""
|
| 167 |
-
# Make a copy and ensure we have data
|
| 168 |
-
df = df.copy()
|
| 169 |
-
df = df.dropna(subset=["date", "price"])
|
| 170 |
|
| 171 |
-
#
|
| 172 |
-
|
| 173 |
-
df = df[df["price"] <= upper_limit]
|
| 174 |
|
| 175 |
-
#
|
| 176 |
-
if
|
| 177 |
-
|
| 178 |
-
df["year_month"] = df["date"].dt.strftime('%Y-%m')
|
| 179 |
-
df = df.groupby("year_month").agg({"date": "first", "price": "mean"}).reset_index(drop=True)
|
| 180 |
-
else:
|
| 181 |
-
# ์ผ ๋จ์๋ก ์ง๊ณ
|
| 182 |
-
df = df.groupby("date")["price"].mean().reset_index()
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
-
#
|
| 189 |
-
|
| 190 |
|
|
|
|
| 191 |
try:
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
seasonality_prior_scale=10.0, # ๊ณ์ ์ฑ ์กฐ์
|
| 199 |
-
seasonality_mode='multiplicative' # ๊ณฑ์
๋ชจ๋ (๊ฐ๊ฒฉ ๋ฐ์ดํฐ์ ์ ํฉ)
|
| 200 |
)
|
|
|
|
| 201 |
|
| 202 |
-
#
|
| 203 |
-
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
#
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
periods = max((pd.Timestamp(horizon_end) - df["date"].max()).days, 1)
|
| 217 |
-
future = m.make_future_dataframe(periods=periods, freq="D")
|
| 218 |
|
| 219 |
-
#
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
|
| 222 |
-
#
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
except Exception as e:
|
| 229 |
-
st.error(f"
|
| 230 |
-
return None
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
-
def
|
| 234 |
-
"""
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
# -------------------------------------------------
|
| 239 |
-
#
|
| 240 |
# -------------------------------------------------
|
|
|
|
| 241 |
raw_df = load_data()
|
| 242 |
|
| 243 |
if len(raw_df) == 0:
|
|
@@ -249,6 +1139,13 @@ selected_item = st.sidebar.selectbox("ํ๋ชฉ", get_items(raw_df))
|
|
| 249 |
current_date = date.today()
|
| 250 |
st.sidebar.caption(f"์ค๋: {current_date}")
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
item_df = raw_df.query("item == @selected_item").copy()
|
| 253 |
if item_df.empty:
|
| 254 |
st.error("์ ํํ ํ๋ชฉ ๋ฐ์ดํฐ ์์")
|
|
@@ -283,15 +1180,22 @@ with st.expander("๋ฐ์ดํฐ ์ง๋จ"):
|
|
| 283 |
|
| 284 |
if len(macro_df) < 2:
|
| 285 |
st.warning(f"{selected_item}์ ๋ํ ๋ฐ์ดํฐ๊ฐ ์ถฉ๋ถํ์ง ์์ต๋๋ค. ์ ์ฒด ๊ธฐ๊ฐ ๋ฐ์ดํฐ๋ฅผ ํ์ํฉ๋๋ค.")
|
| 286 |
-
fig =
|
|
|
|
|
|
|
| 287 |
st.plotly_chart(fig, use_container_width=True)
|
| 288 |
else:
|
| 289 |
try:
|
|
|
|
|
|
|
|
|
|
| 290 |
with st.spinner("์ฅ๊ธฐ ์์ธก ๋ชจ๋ธ ์์ฑ ์ค..."):
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
if
|
| 295 |
# ์ค์ ๋ฐ์ดํฐ์ ์์ธก ๋ฐ์ดํฐ ๊ตฌ๋ถ
|
| 296 |
cutoff_date = pd.Timestamp("2025-01-01")
|
| 297 |
|
|
@@ -309,8 +1213,10 @@ else:
|
|
| 309 |
line=dict(color="blue", width=2)
|
| 310 |
))
|
| 311 |
|
| 312 |
-
# ์์ธก
|
| 313 |
forecast_data = fc_macro[fc_macro["ds"] >= cutoff_date].copy()
|
|
|
|
|
|
|
| 314 |
if not forecast_data.empty:
|
| 315 |
fig.add_trace(go.Scatter(
|
| 316 |
x=forecast_data["ds"],
|
|
@@ -338,6 +1244,9 @@ else:
|
|
| 338 |
name="95% ์ ๋ขฐ ๊ตฌ๊ฐ"
|
| 339 |
))
|
| 340 |
|
|
|
|
|
|
|
|
|
|
| 341 |
# ๋ ์ด์์ ์ค์
|
| 342 |
fig.update_layout(
|
| 343 |
title=f"{selected_item} ์ฅ๊ธฐ ๊ฐ๊ฒฉ ์์ธก (1996-2030)",
|
|
@@ -373,11 +1282,17 @@ else:
|
|
| 373 |
st.error(f"์์ธก๊ฐ ๊ณ์ฐ ์ค๋ฅ: {str(e)}")
|
| 374 |
else:
|
| 375 |
st.warning("์์ธก ๋ชจ๋ธ์ ์์ฑํ ์ ์์ต๋๋ค.")
|
| 376 |
-
fig =
|
|
|
|
|
|
|
| 377 |
st.plotly_chart(fig, use_container_width=True)
|
| 378 |
except Exception as e:
|
| 379 |
st.error(f"์ฅ๊ธฐ ์์ธก ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
st.plotly_chart(fig, use_container_width=True)
|
| 382 |
|
| 383 |
# -------------------------------------------------
|
|
@@ -399,15 +1314,19 @@ except Exception as e:
|
|
| 399 |
|
| 400 |
if len(micro_df) < 2:
|
| 401 |
st.warning(f"์ต๊ทผ ๋ฐ์ดํฐ๊ฐ ์ถฉ๋ถํ์ง ์์ต๋๋ค.")
|
| 402 |
-
fig =
|
|
|
|
|
|
|
| 403 |
st.plotly_chart(fig, use_container_width=True)
|
| 404 |
else:
|
| 405 |
try:
|
| 406 |
with st.spinner("๋จ๊ธฐ ์์ธก ๋ชจ๋ธ ์์ฑ ์ค..."):
|
| 407 |
-
|
| 408 |
-
|
|
|
|
|
|
|
| 409 |
|
| 410 |
-
if
|
| 411 |
# 2024-01-01๋ถํฐ 2026-12-31๊น์ง ํํฐ๋ง
|
| 412 |
start_date = pd.Timestamp("2024-01-01")
|
| 413 |
end_date = pd.Timestamp("2026-12-31")
|
|
@@ -481,6 +1400,9 @@ else:
|
|
| 481 |
name="95% ์ ๋ขฐ ๊ตฌ๊ฐ"
|
| 482 |
))
|
| 483 |
|
|
|
|
|
|
|
|
|
|
| 484 |
# ๋ ์ด์์ ์ค์
|
| 485 |
fig.update_layout(
|
| 486 |
title=f"{selected_item} ์๋ณ ๋จ๊ธฐ ์์ธก (2024-2026)",
|
|
@@ -541,36 +1463,54 @@ else:
|
|
| 541 |
# -------------------------------------------------
|
| 542 |
# SEASONALITY & PATTERN ---------------------------
|
| 543 |
# -------------------------------------------------
|
| 544 |
-
|
| 545 |
-
|
| 546 |
try:
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
except Exception as e:
|
| 571 |
-
st.error(f"
|
| 572 |
-
|
| 573 |
-
st.info("ํจํด ๋ถ์์ ์ํ ์ถฉ๋ถํ ๋ฐ์ดํฐ๊ฐ ์์ต๋๋ค.")
|
| 574 |
|
| 575 |
# -------------------------------------------------
|
| 576 |
# FOOTER ------------------------------------------
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
from datetime import date
|
| 7 |
from pathlib import Path
|
| 8 |
import matplotlib.font_manager as fm
|
| 9 |
import matplotlib as mpl
|
| 10 |
+
import warnings
|
| 11 |
+
warnings.filterwarnings('ignore')
|
| 12 |
+
|
| 13 |
+
# ํ์ํ ์ถ๊ฐ ๋ผ์ด๋ธ๋ฌ๋ฆฌ ๋ก๋
|
| 14 |
+
try:
|
| 15 |
+
import statsmodels.api as sm
|
| 16 |
+
from statsmodels.tsa.statespace.sarimax import SARIMAX
|
| 17 |
+
from statsmodels.tsa.holtwinters import ExponentialSmoothing, SimpleExpSmoothing, Holt
|
| 18 |
+
from statsmodels.tsa.seasonal import seasonal_decompose
|
| 19 |
+
from sklearn.linear_model import LinearRegression
|
| 20 |
+
from sklearn.metrics import mean_absolute_percentage_error
|
| 21 |
+
except ImportError:
|
| 22 |
+
st.error("ํ์ํ ๋ผ์ด๋ธ๋ฌ๋ฆฌ๊ฐ ์ค์น๋์ง ์์์ต๋๋ค. ํฐ๋ฏธ๋์์ ๋ค์ ๋ช
๋ น์ ์คํํ์ธ์:")
|
| 23 |
+
st.code("pip install statsmodels scikit-learn")
|
| 24 |
+
st.stop()
|
| 25 |
|
| 26 |
# -------------------------------------------------
|
| 27 |
# CONFIG ------------------------------------------
|
|
|
|
| 44 |
|
| 45 |
st.set_page_config(page_title="ํ๋ชฉ๋ณ ๊ฐ๊ฒฉ ์์ธก", page_icon="๐", layout="wide")
|
| 46 |
|
| 47 |
+
# -------------------------------------------------
|
| 48 |
+
# ํ๋ชฉ๋ณ ์ต์ ๋ชจ๋ธ ๋งคํ ---------------------------
|
| 49 |
+
# -------------------------------------------------
|
| 50 |
+
item_models = {
|
| 51 |
+
"๊ฐ์น": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 99.82, "model2": "Holt-Winters", "accuracy2": 99.80},
|
| 52 |
+
"๊ฐ์": {"model1": "ETS(Multiplicative)", "accuracy1": 99.58, "model2": "SARIMA(1,0,1)(1,0,1,12)", "accuracy2": 98.70},
|
| 53 |
+
"๊ฑด๊ณ ์ถ": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 99.96, "model2": "Holt", "accuracy2": 99.79},
|
| 54 |
+
"๊ฑด๋ค์๋ง": {"model1": "Naive", "accuracy1": 99.59, "model2": "SeasonalNaive", "accuracy2": 99.34},
|
| 55 |
+
"๊ณ ๊ตฌ๋ง": {"model1": "SARIMA(1,1,1)(1,1,1,12)", "accuracy1": 99.89, "model2": "ETS(Multiplicative)", "accuracy2": 98.91},
|
| 56 |
+
"๊ณ ๋ฑ์ด": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 99.48, "model2": "ETS(Additive)", "accuracy2": 99.42},
|
| 57 |
+
"๊น": {"model1": "SARIMA(0,1,1)(0,1,1,12)", "accuracy1": 99.99, "model2": "SARIMA(0,1,1)(0,1,1,12)", "accuracy2": 99.93},
|
| 58 |
+
"๊น๋ง๋(๊ตญ์ฐ)": {"model1": "SeasonalNaive", "accuracy1": 99.79, "model2": "MovingAverage-6 m", "accuracy2": 98.65},
|
| 59 |
+
"๊นป์": {"model1": "SARIMA(0,1,1)(0,1,1,12)", "accuracy1": 99.68, "model2": "Holt", "accuracy2": 99.54},
|
| 60 |
+
"๋
น๋": {"model1": "WeightedMA-6 m", "accuracy1": 99.53, "model2": "Fourier + LR", "accuracy2": 99.53},
|
| 61 |
+
"๋ํ๋ฆฌ๋ฒ์ฏ": {"model1": "SARIMA(0,1,1)(0,1,1,12)", "accuracy1": 99.84, "model2": "LinearTrend", "accuracy2": 99.80},
|
| 62 |
+
"๋น๊ทผ": {"model1": "Holt", "accuracy1": 99.25, "model2": "ETS(Multiplicative)", "accuracy2": 97.27},
|
| 63 |
+
"๋ค๊นจ": {"model1": "Holt", "accuracy1": 99.57, "model2": "Holt-Winters", "accuracy2": 99.17},
|
| 64 |
+
"๋
์ฝฉ": {"model1": "SARIMA(1,1,1)(1,1,1,12)", "accuracy1": 99.74, "model2": "ETS(Additive)", "accuracy2": 99.37},
|
| 65 |
+
"๋ ๋ชฌ": {"model1": "WeightedMA-6 m", "accuracy1": 99.99, "model2": "LinearTrend", "accuracy2": 98.99},
|
| 66 |
+
"๋ง๊ณ ": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 99.38, "model2": "Holt-Winters", "accuracy2": 99.02},
|
| 67 |
+
"๋ฉ๋ฐ": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 99.48, "model2": "SARIMA(0,1,1)(0,1,1,12)", "accuracy2": 98.99},
|
| 68 |
+
"๋ฉ๋ก ": {"model1": "Naive", "accuracy1": 99.07, "model2": "ETS(Multiplicative)", "accuracy2": 99.01},
|
| 69 |
+
"๋ช
ํ": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 100.00, "model2": "MovingAverage-6 m", "accuracy2": 99.93},
|
| 70 |
+
"๋ฌด": {"model1": "SARIMA(1,1,1)(1,1,1,12)", "accuracy1": 99.54, "model2": "SeasonalNaive", "accuracy2": 88.29, "special": "accuracy_drop"},
|
| 71 |
+
"๋ฌผ์ค์ง์ด": {"model1": "Holt-Winters", "accuracy1": 99.91, "model2": "ETS(Multiplicative)", "accuracy2": 99.36},
|
| 72 |
+
"๋ฏธ๋๋ฆฌ": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 98.71, "model2": "LinearTrend", "accuracy2": 98.54},
|
| 73 |
+
"๋ฐ๋๋": {"model1": "MovingAverage-6 m", "accuracy1": 99.81, "model2": "ETS(Multiplicative)", "accuracy2": 98.86},
|
| 74 |
+
"๋ฐฉ์ธํ ๋งํ ": {"model1": "ETS(Multiplicative)", "accuracy1": 99.62, "model2": "Holt", "accuracy2": 98.28},
|
| 75 |
+
"๋ฐฐ": {"model1": "ETS(Additive)", "accuracy1": 99.34, "model2": "LinearTrend", "accuracy2": 98.57},
|
| 76 |
+
"๋ฐฐ์ถ": {"model1": "Holt", "accuracy1": 99.98, "model2": "MovingAverage-6 m", "accuracy2": 99.71},
|
| 77 |
+
"๋ถ์ด": {"model1": "Fourier + LR", "accuracy1": 99.96, "model2": "MovingAverage-6 m", "accuracy2": 99.94},
|
| 78 |
+
"๋ถ์๊ณ ์ถ": {"model1": "SARIMA(1,1,1)(1,1,1,12)", "accuracy1": 99.75, "model2": "LinearTrend", "accuracy2": 97.61},
|
| 79 |
+
"๋ธ๋ก์ฝ๋ฆฌ": {"model1": "Holt", "accuracy1": 99.54, "model2": "Naive", "accuracy2": 99.93},
|
| 80 |
+
"์ฌ๊ณผ": {"model1": "Holt-Winters", "accuracy1": 99.89, "model2": "ETS(Multiplicative)", "accuracy2": 98.91},
|
| 81 |
+
"์์ถ": {"model1": "ETS(Additive)", "accuracy1": 99.11, "model2": "Holt-Winters", "accuracy2": 97.61},
|
| 82 |
+
"์์ก์ด๋ฒ์ฏ": {"model1": "SimpleExpSmoothing", "accuracy1": 99.95, "model2": "Holt-Winters", "accuracy2": 99.40},
|
| 83 |
+
"์์ฐ": {"model1": "ETS(Additive)", "accuracy1": 99.87, "model2": "Naive", "accuracy2": 99.96},
|
| 84 |
+
"์๊ฐ": {"model1": "Naive", "accuracy1": 99.27, "model2": "ETS(Additive)", "accuracy2": 98.53},
|
| 85 |
+
"์๋ฐ": {"model1": "Naive", "accuracy1": 99.91, "model2": "SARIMA(1,1,1)(1,1,1,12)", "accuracy2": 99.45},
|
| 86 |
+
"์๊ธ์น": {"model1": "Holt-Winters", "accuracy1": 99.70, "model2": "SeasonalNaive", "accuracy2": 98.73},
|
| 87 |
+
"์": {"model1": "SARIMA(0,1,1)(0,1,1,12)", "accuracy1": 99.99, "model2": "Holt-Winters", "accuracy2": 99.88},
|
| 88 |
+
"์๋ฐฐ๊ธฐ๋ฐฐ์ถ": {"model1": "WeightedMA-6 m", "accuracy1": 98.19, "model2": "SeasonalNaive", "accuracy2": 95.73},
|
| 89 |
+
"์๋ฐฐ์ถ": {"model1": "Holt-Winters", "accuracy1": 99.05, "model2": "WeightedMA-6 m", "accuracy2": 97.85},
|
| 90 |
+
"์ํ": {"model1": "ETS(Additive)", "accuracy1": 99.93, "model2": "WeightedMA-6 m", "accuracy2": 99.51},
|
| 91 |
+
"์ผ๊ฐ์ด๋ฐฐ์ถ": {"model1": "SARIMA(1,1,1)(1,1,1,12)", "accuracy1": 99.77, "model2": "SeasonalNaive", "accuracy2": 98.55},
|
| 92 |
+
"์ด๋ฌด": {"model1": "SeasonalNaive", "accuracy1": 99.96, "model2": "Holt", "accuracy2": 99.50},
|
| 93 |
+
"์ค์ด": {"model1": "SeasonalNaive", "accuracy1": 99.82, "model2": "ETS(Additive)", "accuracy2": 98.48},
|
| 94 |
+
"์ ๋ณต": {"model1": "Holt", "accuracy1": 99.90, "model2": "Fourier + LR", "accuracy2": 99.90},
|
| 95 |
+
"์ฐธ๊นจ": {"model1": "WeightedMA-6 m", "accuracy1": 100.00, "model2": "LinearTrend", "accuracy2": 86.44, "special": "accuracy_drop"},
|
| 96 |
+
"์ฐน์": {"model1": "SARIMA(1,0,1)(1,0,1,12)", "accuracy1": 99.71, "model2": "Naive", "accuracy2": 98.64, "special": "accuracy_drop"},
|
| 97 |
+
"์ฝฉ": {"model1": "SARIMA(0,1,1)(0,1,1,12)", "accuracy1": 99.98, "model2": "ETS(Additive)", "accuracy2": 99.68},
|
| 98 |
+
"ํ ๋งํ ": {"model1": "SeasonalNaive", "accuracy1": 97.31, "model2": "MovingAverage-6 m", "accuracy2": 97.57},
|
| 99 |
+
"ํ": {"model1": "MovingAverage-6 m", "accuracy1": 99.92, "model2": "Holt-Winters", "accuracy2": 97.77},
|
| 100 |
+
"ํ์ธ์ ํ": {"model1": "Naive", "accuracy1": 99.51, "model2": "SARIMA(1,0,1)(1,0,1,12)", "accuracy2": 96.39},
|
| 101 |
+
"ํํ๋ฆฌ์นด": {"model1": "SARIMA(0,1,1)(0,1,1,12)", "accuracy1": 99.04, "model2": "WeightedMA-6 m", "accuracy2": 99.36},
|
| 102 |
+
"ํฅ": {"model1": "ETS(Additive)", "accuracy1": 99.87, "model2": "Holt-Winters", "accuracy2": 75.08, "special": "accuracy_drop"},
|
| 103 |
+
"ํฝ์ด๋ฒ์ฏ": {"model1": "SeasonalNaive", "accuracy1": 99.84, "model2": "Fourier + LR", "accuracy2": 98.49},
|
| 104 |
+
"ํ๊ณ ์ถ": {"model1": "Holt-Winters", "accuracy1": 98.95, "model2": "ETS(Multiplicative)", "accuracy2": 98.73},
|
| 105 |
+
"ํผ๋ง": {"model1": "Fourier + LR", "accuracy1": 99.64, "model2": "WeightedMA-6 m", "accuracy2": 98.93},
|
| 106 |
+
"ํธ๋ฐ": {"model1": "ETS(Multiplicative)", "accuracy1": 99.98, "model2": "SeasonalNaive", "accuracy2": 96.61},
|
| 107 |
+
"ํํฉ": {"model1": "Naive", "accuracy1": 99.86, "model2": "SeasonalNaive", "accuracy2": 98.56},
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
# ๊ธฐํ ํ๋ชฉ์ ๋ํ ๊ธฐ๋ณธ ๋ชจ๋ธ (๋ฆฌ์คํธ์ ์๋ ํ๋ชฉ)
|
| 111 |
+
default_models = {
|
| 112 |
+
"model1": "SARIMA(1,0,1)(1,0,1,12)",
|
| 113 |
+
"accuracy1": 99.0,
|
| 114 |
+
"model2": "ETS(Multiplicative)",
|
| 115 |
+
"accuracy2": 98.0
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
# -------------------------------------------------
|
| 119 |
# UTILITIES ---------------------------------------
|
| 120 |
# -------------------------------------------------
|
|
|
|
| 122 |
ITEM_CANDIDATES = {"item", "ํ๋ชฉ", "code", "category", "pdlt_nm", "spcs_nm"}
|
| 123 |
PRICE_CANDIDATES = {"price", "y", "value", "๊ฐ๊ฒฉ", "avrg_prce"}
|
| 124 |
|
|
|
|
| 125 |
def _standardize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
| 126 |
"""Standardize column names to date/item/price and deduplicate."""
|
| 127 |
col_map = {}
|
|
|
|
| 170 |
|
| 171 |
return df
|
| 172 |
|
|
|
|
| 173 |
@st.cache_data(show_spinner=False)
|
| 174 |
def load_data() -> pd.DataFrame:
|
| 175 |
"""Load price data from CSV file."""
|
|
|
|
| 224 |
return df
|
| 225 |
except Exception as e:
|
| 226 |
st.error(f"๋ฐ์ดํฐ ๋ก๋ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
|
|
|
| 227 |
import traceback
|
| 228 |
st.code(traceback.format_exc())
|
| 229 |
st.stop()
|
| 230 |
|
|
|
|
| 231 |
@st.cache_data(show_spinner=False)
|
| 232 |
def get_items(df: pd.DataFrame):
|
| 233 |
return sorted(df["item"].unique())
|
| 234 |
|
| 235 |
+
def get_best_model_for_item(item):
|
| 236 |
+
"""ํ๋ชฉ์ ๋ง๋ ์ต์ ๋ชจ๋ธ ์ ๋ณด ๋ฐํ"""
|
| 237 |
+
return item_models.get(item, default_models)
|
| 238 |
+
|
| 239 |
+
def format_currency(value):
|
| 240 |
+
"""์ํ ํ์์ผ๋ก ์ซ์ ํฌ๋งทํ
"""
|
| 241 |
+
if pd.isna(value) or not np.isfinite(value):
|
| 242 |
+
return "N/A"
|
| 243 |
+
return f"{value:,.0f}์"
|
| 244 |
|
| 245 |
+
# -------------------------------------------------
|
| 246 |
+
# ๋ชจ๋ธ ๊ตฌํ๋ถ --------------------------------------
|
| 247 |
+
# -------------------------------------------------
|
| 248 |
@st.cache_data(show_spinner=False, ttl=3600)
|
| 249 |
+
def prepare_monthly_data(df):
|
| 250 |
+
"""์๋ณ ๋ฐ์ดํฐ ์ค๋น"""
|
| 251 |
+
# ์๋ณ๋ก ์ง๊ณ
|
| 252 |
+
monthly_df = df.copy()
|
| 253 |
+
monthly_df['year_month'] = monthly_df['date'].dt.strftime('%Y-%m')
|
| 254 |
+
monthly_df = monthly_df.groupby('year_month').agg({'date': 'last', 'price': 'mean'}).reset_index(drop=True)
|
| 255 |
+
monthly_df.sort_values('date', inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
+
# ์ธ๋ฑ์ค ์ค์
|
| 258 |
+
monthly_df.set_index('date', inplace=True)
|
|
|
|
| 259 |
|
| 260 |
+
# ๊ฒฐ์ธก์น ๋ณด๊ฐ (์๋ณ ๋ฐ์ดํฐ์ ๋น ์์ด ์์ ์ ์์)
|
| 261 |
+
if len(monthly_df) > 1:
|
| 262 |
+
monthly_df = monthly_df.asfreq('M', method='ffill')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
return monthly_df
|
| 265 |
+
|
| 266 |
+
def fit_sarima(df, order, seasonal_order, horizon_end):
|
| 267 |
+
"""SARIMA ๋ชจ๋ธ ๊ตฌํ"""
|
| 268 |
+
import pandas as pd
|
| 269 |
+
import numpy as np
|
| 270 |
+
from statsmodels.tsa.statespace.sarimax import SARIMAX
|
| 271 |
|
| 272 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 273 |
+
monthly_df = prepare_monthly_data(df)
|
| 274 |
|
| 275 |
+
# ๋ชจ๋ธ ํ์ต
|
| 276 |
try:
|
| 277 |
+
model = SARIMAX(
|
| 278 |
+
monthly_df['price'],
|
| 279 |
+
order=order,
|
| 280 |
+
seasonal_order=seasonal_order,
|
| 281 |
+
enforce_stationarity=False,
|
| 282 |
+
enforce_invertibility=False
|
|
|
|
|
|
|
| 283 |
)
|
| 284 |
+
results = model.fit(disp=False)
|
| 285 |
|
| 286 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 287 |
+
last_date = monthly_df.index[-1]
|
| 288 |
+
end_date = pd.Timestamp(horizon_end)
|
| 289 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 290 |
|
| 291 |
+
# ์์ธก ์ํ
|
| 292 |
+
forecast = results.get_forecast(steps=periods)
|
| 293 |
+
pred_mean = forecast.predicted_mean
|
| 294 |
+
pred_ci = forecast.conf_int()
|
| 295 |
|
| 296 |
+
# Prophet ํ์์ผ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 297 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 298 |
+
|
| 299 |
+
fc_df = pd.DataFrame({
|
| 300 |
+
'ds': future_dates,
|
| 301 |
+
'yhat': pred_mean.values,
|
| 302 |
+
'yhat_lower': pred_ci.iloc[:, 0].values,
|
| 303 |
+
'yhat_upper': pred_ci.iloc[:, 1].values
|
| 304 |
+
})
|
|
|
|
|
|
|
| 305 |
|
| 306 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ (๋ ์ง, ๊ฐ๊ฒฉ)
|
| 307 |
+
fc_df_monthly = pd.DataFrame({
|
| 308 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 309 |
+
})
|
| 310 |
|
| 311 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๏ฟฝ๏ฟฝ๊ณผ ์ถ๊ฐ
|
| 312 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 313 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 314 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 315 |
|
| 316 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 317 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 318 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 319 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 320 |
+
|
| 321 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 322 |
+
fc_df_monthly['yearly'] = 0
|
| 323 |
+
fc_df_monthly['trend'] = 0
|
| 324 |
+
|
| 325 |
+
try:
|
| 326 |
+
# ๊ฐ๋ฅํ๋ฉด ๊ณ์ ์ฑ ๋ถํด
|
| 327 |
+
decomposition = seasonal_decompose(monthly_df['price'], model='multiplicative', period=12)
|
| 328 |
+
trend = decomposition.trend
|
| 329 |
+
seasonal = decomposition.seasonal
|
| 330 |
+
|
| 331 |
+
# ๊ฒฐ๊ณผ์ ๊ณ์ ์ฑ ๋ฐ์
|
| 332 |
+
for i, date in enumerate(fc_df_monthly['ds']):
|
| 333 |
+
month = date.month
|
| 334 |
+
if month in seasonal.index.month:
|
| 335 |
+
seasonal_value = seasonal[seasonal.index.month == month].mean()
|
| 336 |
+
fc_df_monthly.loc[i, 'yearly'] = seasonal_value
|
| 337 |
+
except:
|
| 338 |
+
pass
|
| 339 |
+
|
| 340 |
+
return fc_df_monthly
|
| 341 |
+
|
| 342 |
except Exception as e:
|
| 343 |
+
st.error(f"SARIMA ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 344 |
+
return None
|
| 345 |
|
| 346 |
+
def fit_ets(df, seasonal_type, horizon_end):
|
| 347 |
+
"""ETS ๋ชจ๋ธ ๊ตฌํ"""
|
| 348 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 349 |
+
monthly_df = prepare_monthly_data(df)
|
| 350 |
+
|
| 351 |
+
# ๋ชจ๋ธ ํ๋ผ๋ฏธํฐ ์ค์
|
| 352 |
+
if seasonal_type == 'multiplicative':
|
| 353 |
+
trend_type = 'add'
|
| 354 |
+
seasonal = 'mul'
|
| 355 |
+
else: # additive
|
| 356 |
+
trend_type = 'add'
|
| 357 |
+
seasonal = 'add'
|
| 358 |
+
|
| 359 |
+
# ๋ชจ๋ธ ํ์ต
|
| 360 |
+
try:
|
| 361 |
+
model = ExponentialSmoothing(
|
| 362 |
+
monthly_df['price'],
|
| 363 |
+
trend=trend_type,
|
| 364 |
+
seasonal=seasonal,
|
| 365 |
+
seasonal_periods=12,
|
| 366 |
+
damped=True
|
| 367 |
+
)
|
| 368 |
+
results = model.fit(optimized=True)
|
| 369 |
+
|
| 370 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 371 |
+
last_date = monthly_df.index[-1]
|
| 372 |
+
end_date = pd.Timestamp(horizon_end)
|
| 373 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 374 |
+
|
| 375 |
+
# ์์ธก ์ํ
|
| 376 |
+
forecast = results.forecast(periods)
|
| 377 |
+
|
| 378 |
+
# Prophet ํ์์ผ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 379 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 380 |
+
|
| 381 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์ (ETS๋ ๊ธฐ๋ณธ ์ ๋ขฐ ๊ตฌ๊ฐ์ ์ ๊ณตํ์ง ์์)
|
| 382 |
+
std_error = np.std(results.resid)
|
| 383 |
+
lower_bound = forecast - 1.96 * std_error
|
| 384 |
+
upper_bound = forecast + 1.96 * std_error
|
| 385 |
+
|
| 386 |
+
fc_df = pd.DataFrame({
|
| 387 |
+
'ds': future_dates,
|
| 388 |
+
'yhat': forecast.values,
|
| 389 |
+
'yhat_lower': lower_bound.values,
|
| 390 |
+
'yhat_upper': upper_bound.values
|
| 391 |
+
})
|
| 392 |
+
|
| 393 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 394 |
+
fc_df_monthly = pd.DataFrame({
|
| 395 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 396 |
+
})
|
| 397 |
+
|
| 398 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 399 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 400 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 401 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 402 |
+
|
| 403 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 404 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 405 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 406 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 407 |
+
|
| 408 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 409 |
+
fc_df_monthly['yearly'] = 0
|
| 410 |
+
fc_df_monthly['trend'] = 0
|
| 411 |
+
|
| 412 |
+
try:
|
| 413 |
+
# ๊ฐ๋ฅํ๋ฉด ๊ณ์ ์ฑ ๋ถํด
|
| 414 |
+
decomposition = seasonal_decompose(monthly_df['price'], model=seasonal_type, period=12)
|
| 415 |
+
trend = decomposition.trend
|
| 416 |
+
seasonal = decomposition.seasonal
|
| 417 |
+
|
| 418 |
+
# ๊ฒฐ๊ณผ์ ๊ณ์ ์ฑ ๋ฐ์
|
| 419 |
+
for i, date in enumerate(fc_df_monthly['ds']):
|
| 420 |
+
month = date.month
|
| 421 |
+
if month in seasonal.index.month:
|
| 422 |
+
seasonal_value = seasonal[seasonal.index.month == month].mean()
|
| 423 |
+
fc_df_monthly.loc[i, 'yearly'] = seasonal_value
|
| 424 |
+
except:
|
| 425 |
+
pass
|
| 426 |
+
|
| 427 |
+
return fc_df_monthly
|
| 428 |
+
|
| 429 |
+
except Exception as e:
|
| 430 |
+
st.error(f"ETS ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 431 |
+
return None
|
| 432 |
|
| 433 |
+
def fit_holt(df, horizon_end):
|
| 434 |
+
"""Holt ๋ชจ๋ธ ๊ตฌํ"""
|
| 435 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 436 |
+
monthly_df = prepare_monthly_data(df)
|
| 437 |
+
|
| 438 |
+
# ๋ชจ๋ธ ํ์ต
|
| 439 |
+
try:
|
| 440 |
+
model = Holt(monthly_df['price'], damped=True)
|
| 441 |
+
results = model.fit(optimized=True)
|
| 442 |
+
|
| 443 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 444 |
+
last_date = monthly_df.index[-1]
|
| 445 |
+
end_date = pd.Timestamp(horizon_end)
|
| 446 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 447 |
+
|
| 448 |
+
# ์์ธก ์ํ
|
| 449 |
+
forecast = results.forecast(periods)
|
| 450 |
+
|
| 451 |
+
# Prophet ํ์์ผ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 452 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 453 |
+
|
| 454 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์
|
| 455 |
+
std_error = np.std(results.resid)
|
| 456 |
+
lower_bound = forecast - 1.96 * std_error
|
| 457 |
+
upper_bound = forecast + 1.96 * std_error
|
| 458 |
+
|
| 459 |
+
fc_df = pd.DataFrame({
|
| 460 |
+
'ds': future_dates,
|
| 461 |
+
'yhat': forecast.values,
|
| 462 |
+
'yhat_lower': lower_bound.values,
|
| 463 |
+
'yhat_upper': upper_bound.values
|
| 464 |
+
})
|
| 465 |
+
|
| 466 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 467 |
+
fc_df_monthly = pd.DataFrame({
|
| 468 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 469 |
+
})
|
| 470 |
+
|
| 471 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 472 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 473 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 474 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 475 |
+
|
| 476 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 477 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 478 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 479 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 480 |
+
|
| 481 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 482 |
+
fc_df_monthly['yearly'] = 0
|
| 483 |
+
fc_df_monthly['trend'] = fc_df_monthly['yhat'] # Holt๋ ์ถ์ธ๋ง ๋ชจ๋ธ๋ง
|
| 484 |
+
|
| 485 |
+
return fc_df_monthly
|
| 486 |
+
|
| 487 |
+
except Exception as e:
|
| 488 |
+
st.error(f"Holt ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 489 |
+
return None
|
| 490 |
+
|
| 491 |
+
def fit_holt_winters(df, horizon_end):
|
| 492 |
+
"""Holt-Winters ๋ชจ๋ธ ๊ตฌํ"""
|
| 493 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 494 |
+
monthly_df = prepare_monthly_data(df)
|
| 495 |
+
|
| 496 |
+
# ๋ชจ๋ธ ํ์ต
|
| 497 |
+
try:
|
| 498 |
+
model = ExponentialSmoothing(
|
| 499 |
+
monthly_df['price'],
|
| 500 |
+
trend='add',
|
| 501 |
+
seasonal='mul', # ๊ณ์ ์ฑ์ ๊ณฑ์
๋ฐฉ์์ด ๋์ฐ๋ฌผ ๊ฐ๊ฒฉ์ ๋ ์ ํฉ
|
| 502 |
+
seasonal_periods=12,
|
| 503 |
+
damped=True
|
| 504 |
+
)
|
| 505 |
+
results = model.fit(optimized=True)
|
| 506 |
+
|
| 507 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 508 |
+
last_date = monthly_df.index[-1]
|
| 509 |
+
end_date = pd.Timestamp(horizon_end)
|
| 510 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 511 |
+
|
| 512 |
+
# ์์ธก ์ํ
|
| 513 |
+
forecast = results.forecast(periods)
|
| 514 |
+
|
| 515 |
+
# Prophet ํ์์ผ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 516 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 517 |
+
|
| 518 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์
|
| 519 |
+
std_error = np.std(results.resid)
|
| 520 |
+
lower_bound = forecast - 1.96 * std_error
|
| 521 |
+
upper_bound = forecast + 1.96 * std_error
|
| 522 |
+
|
| 523 |
+
fc_df = pd.DataFrame({
|
| 524 |
+
'ds': future_dates,
|
| 525 |
+
'yhat': forecast.values,
|
| 526 |
+
'yhat_lower': lower_bound.values,
|
| 527 |
+
'yhat_upper': upper_bound.values
|
| 528 |
+
})
|
| 529 |
+
|
| 530 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 531 |
+
fc_df_monthly = pd.DataFrame({
|
| 532 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 533 |
+
})
|
| 534 |
+
|
| 535 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 536 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 537 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 538 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 539 |
+
|
| 540 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 541 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 542 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 543 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 544 |
+
|
| 545 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 546 |
+
fc_df_monthly['yearly'] = 0
|
| 547 |
+
fc_df_monthly['trend'] = 0
|
| 548 |
+
|
| 549 |
+
try:
|
| 550 |
+
# Holt-Winters ๋ชจ๋ธ์์ ๊ณ์ ์ฑ ์ถ์ถ
|
| 551 |
+
seasonal = results.seasonal_
|
| 552 |
+
|
| 553 |
+
# ๊ฒฐ๊ณผ์ ๊ณ์ ์ฑ ๋ฐ์
|
| 554 |
+
for i, date in enumerate(fc_df_monthly['ds']):
|
| 555 |
+
month = date.month - 1 # 0-indexed
|
| 556 |
+
if month < len(seasonal):
|
| 557 |
+
fc_df_monthly.loc[i, 'yearly'] = seasonal[month] * fc_df_monthly.loc[i, 'yhat']
|
| 558 |
+
fc_df_monthly.loc[i, 'trend'] = fc_df_monthly.loc[i, 'yhat'] - fc_df_monthly.loc[i, 'yearly']
|
| 559 |
+
except:
|
| 560 |
+
pass
|
| 561 |
+
|
| 562 |
+
return fc_df_monthly
|
| 563 |
+
|
| 564 |
+
except Exception as e:
|
| 565 |
+
st.error(f"Holt-Winters ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 566 |
+
return None
|
| 567 |
+
|
| 568 |
+
def fit_moving_average(df, window, horizon_end):
|
| 569 |
+
"""์ด๋ ํ๊ท ๋ชจ๋ธ ๊ตฌํ"""
|
| 570 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 571 |
+
monthly_df = prepare_monthly_data(df)
|
| 572 |
+
|
| 573 |
+
try:
|
| 574 |
+
# ๋ง์ง๋ง window ๊ฐ์์ ํ๊ท ๊ณ์ฐ
|
| 575 |
+
last_values = monthly_df['price'].iloc[-window:]
|
| 576 |
+
ma_value = last_values.mean()
|
| 577 |
+
|
| 578 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 579 |
+
last_date = monthly_df.index[-1]
|
| 580 |
+
end_date = pd.Timestamp(horizon_end)
|
| 581 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 582 |
+
|
| 583 |
+
# ์์ธก ์ํ (๋ชจ๋ ๋ฏธ๋ ์์ ์ ๋์ผํ ๊ฐ)
|
| 584 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 585 |
+
|
| 586 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์
|
| 587 |
+
std_error = last_values.std()
|
| 588 |
+
lower_bound = ma_value - 1.96 * std_error
|
| 589 |
+
upper_bound = ma_value + 1.96 * std_error
|
| 590 |
+
|
| 591 |
+
fc_df = pd.DataFrame({
|
| 592 |
+
'ds': future_dates,
|
| 593 |
+
'yhat': [ma_value] * len(future_dates),
|
| 594 |
+
'yhat_lower': [lower_bound] * len(future_dates),
|
| 595 |
+
'yhat_upper': [upper_bound] * len(future_dates)
|
| 596 |
+
})
|
| 597 |
+
|
| 598 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 599 |
+
fc_df_monthly = pd.DataFrame({
|
| 600 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 601 |
+
})
|
| 602 |
+
|
| 603 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 604 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 605 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 606 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 607 |
+
|
| 608 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 609 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 610 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 611 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 612 |
+
|
| 613 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 614 |
+
fc_df_monthly['yearly'] = 0
|
| 615 |
+
fc_df_monthly['trend'] = fc_df_monthly['yhat']
|
| 616 |
+
|
| 617 |
+
return fc_df_monthly
|
| 618 |
+
|
| 619 |
+
except Exception as e:
|
| 620 |
+
st.error(f"์ด๋ ํ๊ท ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 621 |
+
return None
|
| 622 |
+
|
| 623 |
+
def fit_weighted_ma(df, window, horizon_end):
|
| 624 |
+
"""๊ฐ์ค ์ด๋ ํ๊ท ๋ชจ๋ธ ๊ตฌํ"""
|
| 625 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 626 |
+
monthly_df = prepare_monthly_data(df)
|
| 627 |
+
|
| 628 |
+
try:
|
| 629 |
+
# ๋ง์ง๋ง window ๊ฐ์์ ๊ฐ์ค ํ๊ท ๊ณ์ฐ
|
| 630 |
+
last_values = monthly_df['price'].iloc[-window:].to_numpy()
|
| 631 |
+
|
| 632 |
+
# ๊ฐ์ค์น ์์ฑ (์ต๊ทผ ๋ฐ์ดํฐ์ ๋ ๋์ ๊ฐ์ค์น)
|
| 633 |
+
weights = np.arange(1, window + 1)
|
| 634 |
+
weights = weights / np.sum(weights)
|
| 635 |
+
|
| 636 |
+
wma_value = np.sum(last_values * weights)
|
| 637 |
+
|
| 638 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 639 |
+
last_date = monthly_df.index[-1]
|
| 640 |
+
end_date = pd.Timestamp(horizon_end)
|
| 641 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 642 |
+
|
| 643 |
+
# ์์ธก ์ํ (๋ชจ๋ ๋ฏธ๋ ์์ ์ ๋์ผํ ๊ฐ)
|
| 644 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 645 |
+
|
| 646 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์
|
| 647 |
+
std_error = np.std(last_values)
|
| 648 |
+
lower_bound = wma_value - 1.96 * std_error
|
| 649 |
+
upper_bound = wma_value + 1.96 * std_error
|
| 650 |
+
|
| 651 |
+
fc_df = pd.DataFrame({
|
| 652 |
+
'ds': future_dates,
|
| 653 |
+
'yhat': [wma_value] * len(future_dates),
|
| 654 |
+
'yhat_lower': [lower_bound] * len(future_dates),
|
| 655 |
+
'yhat_upper': [upper_bound] * len(future_dates)
|
| 656 |
+
})
|
| 657 |
+
|
| 658 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 659 |
+
fc_df_monthly = pd.DataFrame({
|
| 660 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 661 |
+
})
|
| 662 |
+
|
| 663 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 664 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 665 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 666 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 667 |
+
|
| 668 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 669 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 670 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 671 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 672 |
+
|
| 673 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 674 |
+
fc_df_monthly['yearly'] = 0
|
| 675 |
+
fc_df_monthly['trend'] = fc_df_monthly['yhat']
|
| 676 |
+
|
| 677 |
+
return fc_df_monthly
|
| 678 |
+
|
| 679 |
+
except Exception as e:
|
| 680 |
+
st.error(f"๊ฐ์ค ์ด๋ ํ๊ท ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 681 |
+
return None
|
| 682 |
+
|
| 683 |
+
def fit_naive(df, horizon_end):
|
| 684 |
+
"""๋จ์ Naive ๋ชจ๋ธ ๊ตฌํ"""
|
| 685 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 686 |
+
monthly_df = prepare_monthly_data(df)
|
| 687 |
+
|
| 688 |
+
try:
|
| 689 |
+
# ๋ง์ง๋ง ๊ฐ ์ฌ์ฉ
|
| 690 |
+
last_value = monthly_df['price'].iloc[-1]
|
| 691 |
+
|
| 692 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 693 |
+
last_date = monthly_df.index[-1]
|
| 694 |
+
end_date = pd.Timestamp(horizon_end)
|
| 695 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 696 |
+
|
| 697 |
+
# ์์ธก ์ํ (๋ชจ๋ ๋ฏธ๋ ์์ ์ ๋ง์ง๋ง ๊ฐ)
|
| 698 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 699 |
+
|
| 700 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์ (๊ณผ๊ฑฐ 12๊ฐ์ ํ์คํธ์ฐจ ์ฌ์ฉ)
|
| 701 |
+
history_std = monthly_df['price'].iloc[-12:].std() if len(monthly_df) >= 12 else monthly_df['price'].std()
|
| 702 |
+
lower_bound = last_value - 1.96 * history_std
|
| 703 |
+
upper_bound = last_value + 1.96 * history_std
|
| 704 |
+
|
| 705 |
+
fc_df = pd.DataFrame({
|
| 706 |
+
'ds': future_dates,
|
| 707 |
+
'yhat': [last_value] * len(future_dates),
|
| 708 |
+
'yhat_lower': [lower_bound] * len(future_dates),
|
| 709 |
+
'yhat_upper': [upper_bound] * len(future_dates)
|
| 710 |
+
})
|
| 711 |
+
|
| 712 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 713 |
+
fc_df_monthly = pd.DataFrame({
|
| 714 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 715 |
+
})
|
| 716 |
+
|
| 717 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 718 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 719 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 720 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 721 |
+
|
| 722 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 723 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 724 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 725 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 726 |
+
|
| 727 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 728 |
+
fc_df_monthly['yearly'] = 0
|
| 729 |
+
fc_df_monthly['trend'] = fc_df_monthly['yhat']
|
| 730 |
+
|
| 731 |
+
return fc_df_monthly
|
| 732 |
+
|
| 733 |
+
except Exception as e:
|
| 734 |
+
st.error(f"Naive ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 735 |
+
return None
|
| 736 |
+
|
| 737 |
+
def fit_seasonal_naive(df, horizon_end):
|
| 738 |
+
"""๊ณ์ ์ฑ Naive ๋ชจ๋ธ ๊ตฌํ"""
|
| 739 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 740 |
+
monthly_df = prepare_monthly_data(df)
|
| 741 |
+
|
| 742 |
+
try:
|
| 743 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 744 |
+
last_date = monthly_df.index[-1]
|
| 745 |
+
end_date = pd.Timestamp(horizon_end)
|
| 746 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 747 |
+
|
| 748 |
+
# ์์ธก ์ํ (๊ฐ ์์ ๋ํด ์๋
๊ฐ์ ๋ฌ ๊ฐ๊ฒฉ ์ฌ์ฉ)
|
| 749 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 750 |
+
future_values = []
|
| 751 |
+
lower_bounds = []
|
| 752 |
+
upper_bounds = []
|
| 753 |
+
|
| 754 |
+
for date in future_dates:
|
| 755 |
+
# ๊ฐ์ ์์ ๊ฐ ์ฐพ๊ธฐ
|
| 756 |
+
same_month_values = monthly_df[monthly_df.index.month == date.month]['price']
|
| 757 |
+
|
| 758 |
+
if len(same_month_values) > 0:
|
| 759 |
+
# ๊ฐ์ ์ ๊ฐ์ฅ ์ต๊ทผ ๊ฐ ์ฌ์ฉ
|
| 760 |
+
forecast_value = same_month_values.iloc[-1]
|
| 761 |
+
|
| 762 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ
|
| 763 |
+
std_error = same_month_values.std() if len(same_month_values) > 1 else monthly_df['price'].std()
|
| 764 |
+
lower_bound = forecast_value - 1.96 * std_error
|
| 765 |
+
upper_bound = forecast_value + 1.96 * std_error
|
| 766 |
+
else:
|
| 767 |
+
# ๊ฐ์ ์ ๋ฐ์ดํฐ ์์ผ๋ฉด ์ ์ฒด ํ๊ท ์ฌ์ฉ
|
| 768 |
+
forecast_value = monthly_df['price'].mean()
|
| 769 |
+
std_error = monthly_df['price'].std()
|
| 770 |
+
lower_bound = forecast_value - 1.96 * std_error
|
| 771 |
+
upper_bound = forecast_value + 1.96 * std_error
|
| 772 |
+
|
| 773 |
+
future_values.append(forecast_value)
|
| 774 |
+
lower_bounds.append(lower_bound)
|
| 775 |
+
upper_bounds.append(upper_bound)
|
| 776 |
+
|
| 777 |
+
fc_df = pd.DataFrame({
|
| 778 |
+
'ds': future_dates,
|
| 779 |
+
'yhat': future_values,
|
| 780 |
+
'yhat_lower': lower_bounds,
|
| 781 |
+
'yhat_upper': upper_bounds
|
| 782 |
+
})
|
| 783 |
+
|
| 784 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 785 |
+
fc_df_monthly = pd.DataFrame({
|
| 786 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 787 |
+
})
|
| 788 |
+
|
| 789 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 790 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 791 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 792 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 793 |
+
|
| 794 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 795 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 796 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 797 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 798 |
+
|
| 799 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 800 |
+
fc_df_monthly['yearly'] = fc_df_monthly['yhat']
|
| 801 |
+
fc_df_monthly['trend'] = 0
|
| 802 |
+
|
| 803 |
+
return fc_df_monthly
|
| 804 |
+
|
| 805 |
+
except Exception as e:
|
| 806 |
+
st.error(f"Seasonal Naive ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 807 |
+
return None
|
| 808 |
+
|
| 809 |
+
def fit_fourier_lr(df, horizon_end):
|
| 810 |
+
"""Fourier + ์ ํ ํ๊ท ๋ชจ๋ธ ๊ตฌํ"""
|
| 811 |
+
from sklearn.linear_model import LinearRegression
|
| 812 |
+
|
| 813 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 814 |
+
monthly_df = prepare_monthly_data(df)
|
| 815 |
+
|
| 816 |
+
try:
|
| 817 |
+
# ์๊ฐ ๋ณ์ ์์ฑ
|
| 818 |
+
y = monthly_df['price'].values
|
| 819 |
+
t = np.arange(len(y))
|
| 820 |
+
|
| 821 |
+
# Fourier ํน์ฑ ์์ฑ (์ฐ๊ฐ ๊ณ์ ์ฑ)
|
| 822 |
+
p = 12 # ์ฃผ๊ธฐ (1๋
)
|
| 823 |
+
X = np.column_stack([
|
| 824 |
+
t, # ์ ํ ์ถ์ธ
|
| 825 |
+
np.sin(2 * np.pi * t / p),
|
| 826 |
+
np.cos(2 * np.pi * t / p),
|
| 827 |
+
np.sin(4 * np.pi * t / p),
|
| 828 |
+
np.cos(4 * np.pi * t / p)
|
| 829 |
+
])
|
| 830 |
+
|
| 831 |
+
# ๋ชจ๋ธ ํ์ต
|
| 832 |
+
model = LinearRegression()
|
| 833 |
+
model.fit(X, y)
|
| 834 |
+
|
| 835 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 836 |
+
last_date = monthly_df.index[-1]
|
| 837 |
+
end_date = pd.Timestamp(horizon_end)
|
| 838 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 839 |
+
|
| 840 |
+
# ์์ธก ์ํ
|
| 841 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 842 |
+
|
| 843 |
+
# ๋ฏธ๋ ์์ ํน์ฑ ์์ฑ
|
| 844 |
+
t_future = np.arange(len(y), len(y) + periods)
|
| 845 |
+
X_future = np.column_stack([
|
| 846 |
+
t_future,
|
| 847 |
+
np.sin(2 * np.pi * t_future / p),
|
| 848 |
+
np.cos(2 * np.pi * t_future / p),
|
| 849 |
+
np.sin(4 * np.pi * t_future / p),
|
| 850 |
+
np.cos(4 * np.pi * t_future / p)
|
| 851 |
+
])
|
| 852 |
+
|
| 853 |
+
# ์์ธก
|
| 854 |
+
forecast = model.predict(X_future)
|
| 855 |
+
|
| 856 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์
|
| 857 |
+
y_pred = model.predict(X)
|
| 858 |
+
mse = np.mean((y - y_pred) ** 2)
|
| 859 |
+
std_error = np.sqrt(mse)
|
| 860 |
+
|
| 861 |
+
lower_bound = forecast - 1.96 * std_error
|
| 862 |
+
upper_bound = forecast + 1.96 * std_error
|
| 863 |
+
|
| 864 |
+
fc_df = pd.DataFrame({
|
| 865 |
+
'ds': future_dates,
|
| 866 |
+
'yhat': forecast,
|
| 867 |
+
'yhat_lower': lower_bound,
|
| 868 |
+
'yhat_upper': upper_bound
|
| 869 |
+
})
|
| 870 |
+
|
| 871 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 872 |
+
fc_df_monthly = pd.DataFrame({
|
| 873 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 874 |
+
})
|
| 875 |
+
|
| 876 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 877 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 878 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 879 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 880 |
+
|
| 881 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 882 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 883 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 884 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 885 |
+
|
| 886 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 887 |
+
fc_df_monthly['trend'] = model.coef_[0] * np.arange(len(fc_df_monthly)) + model.intercept_
|
| 888 |
+
|
| 889 |
+
# ๊ณ์ ์ฑ ๊ณ์ฐ
|
| 890 |
+
season_features = np.column_stack([
|
| 891 |
+
np.sin(2 * np.pi * np.arange(len(fc_df_monthly)) / p),
|
| 892 |
+
np.cos(2 * np.pi * np.arange(len(fc_df_monthly)) / p),
|
| 893 |
+
np.sin(4 * np.pi * np.arange(len(fc_df_monthly)) / p),
|
| 894 |
+
np.cos(4 * np.pi * np.arange(len(fc_df_monthly)) / p)
|
| 895 |
+
])
|
| 896 |
+
|
| 897 |
+
seasonal_effect = np.dot(season_features, model.coef_[1:5])
|
| 898 |
+
fc_df_monthly['yearly'] = seasonal_effect
|
| 899 |
+
|
| 900 |
+
return fc_df_monthly
|
| 901 |
+
|
| 902 |
+
except Exception as e:
|
| 903 |
+
st.error(f"Fourier + LR ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 904 |
+
return None
|
| 905 |
+
|
| 906 |
+
def fit_linear_trend(df, horizon_end):
|
| 907 |
+
"""์ ํ ์ถ์ธ ๋ชจ๋ธ ๊ตฌํ"""
|
| 908 |
+
from sklearn.linear_model import LinearRegression
|
| 909 |
+
|
| 910 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 911 |
+
monthly_df = prepare_monthly_data(df)
|
| 912 |
+
|
| 913 |
+
try:
|
| 914 |
+
# ์๊ฐ ๋ณ์ ์์ฑ
|
| 915 |
+
y = monthly_df['price'].values
|
| 916 |
+
t = np.arange(len(y)).reshape(-1, 1)
|
| 917 |
+
|
| 918 |
+
# ๋ชจ๋ธ ํ์ต
|
| 919 |
+
model = LinearRegression()
|
| 920 |
+
model.fit(t, y)
|
| 921 |
+
|
| 922 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 923 |
+
last_date = monthly_df.index[-1]
|
| 924 |
+
end_date = pd.Timestamp(horizon_end)
|
| 925 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 926 |
+
|
| 927 |
+
# ์์ธก ์ํ
|
| 928 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 929 |
+
t_future = np.arange(len(y), len(y) + periods).reshape(-1, 1)
|
| 930 |
+
forecast = model.predict(t_future)
|
| 931 |
+
|
| 932 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์
|
| 933 |
+
y_pred = model.predict(t)
|
| 934 |
+
mse = np.mean((y - y_pred) ** 2)
|
| 935 |
+
std_error = np.sqrt(mse)
|
| 936 |
+
|
| 937 |
+
lower_bound = forecast - 1.96 * std_error
|
| 938 |
+
upper_bound = forecast + 1.96 * std_error
|
| 939 |
+
|
| 940 |
+
fc_df = pd.DataFrame({
|
| 941 |
+
'ds': future_dates,
|
| 942 |
+
'yhat': forecast,
|
| 943 |
+
'yhat_lower': lower_bound,
|
| 944 |
+
'yhat_upper': upper_bound
|
| 945 |
+
})
|
| 946 |
+
|
| 947 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 948 |
+
fc_df_monthly = pd.DataFrame({
|
| 949 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 950 |
+
})
|
| 951 |
+
|
| 952 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 953 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 954 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 955 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 956 |
+
|
| 957 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 958 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 959 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 960 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 961 |
+
|
| 962 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 963 |
+
fc_df_monthly['yearly'] = 0
|
| 964 |
+
fc_df_monthly['trend'] = fc_df_monthly['yhat']
|
| 965 |
+
|
| 966 |
+
return fc_df_monthly
|
| 967 |
+
|
| 968 |
+
except Exception as e:
|
| 969 |
+
st.error(f"Linear Trend ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 970 |
+
return None
|
| 971 |
|
| 972 |
+
def fit_simple_exp_smoothing(df, horizon_end):
|
| 973 |
+
"""๋จ์ ์ง์ ํํ ๋ชจ๋ธ ๊ตฌํ"""
|
| 974 |
+
# ์๋ณ ๋ฐ์ดํฐ ์ค๋น
|
| 975 |
+
monthly_df = prepare_monthly_data(df)
|
| 976 |
+
|
| 977 |
+
try:
|
| 978 |
+
# ๋ชจ๋ธ ํ์ต
|
| 979 |
+
model = SimpleExpSmoothing(monthly_df['price'])
|
| 980 |
+
results = model.fit(optimized=True)
|
| 981 |
+
|
| 982 |
+
# ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ
|
| 983 |
+
last_date = monthly_df.index[-1]
|
| 984 |
+
end_date = pd.Timestamp(horizon_end)
|
| 985 |
+
periods = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month)
|
| 986 |
+
|
| 987 |
+
# ์์ธก ์ํ
|
| 988 |
+
forecast = results.forecast(periods)
|
| 989 |
+
|
| 990 |
+
# ์ ๋ขฐ ๊ตฌ๊ฐ ์ถ์
|
| 991 |
+
std_error = np.std(results.resid)
|
| 992 |
+
lower_bound = forecast - 1.96 * std_error
|
| 993 |
+
upper_bound = forecast + 1.96 * std_error
|
| 994 |
+
|
| 995 |
+
# Prophet ํ์์ผ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 996 |
+
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=periods, freq='M')
|
| 997 |
+
|
| 998 |
+
fc_df = pd.DataFrame({
|
| 999 |
+
'ds': future_dates,
|
| 1000 |
+
'yhat': forecast.values,
|
| 1001 |
+
'yhat_lower': lower_bound.values,
|
| 1002 |
+
'yhat_upper': upper_bound.values
|
| 1003 |
+
})
|
| 1004 |
+
|
| 1005 |
+
# ์๋ณ๋ก ๊ฒฐ๊ณผ ๋ณํ
|
| 1006 |
+
fc_df_monthly = pd.DataFrame({
|
| 1007 |
+
'ds': pd.date_range(start=monthly_df.index[0], end=future_dates[-1], freq='M'),
|
| 1008 |
+
})
|
| 1009 |
+
|
| 1010 |
+
# ํ์ต ๋ฐ์ดํฐ ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 1011 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat'] = monthly_df['price'].values
|
| 1012 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_lower'] = monthly_df['price'].values
|
| 1013 |
+
fc_df_monthly.loc[:len(monthly_df)-1, 'yhat_upper'] = monthly_df['price'].values
|
| 1014 |
+
|
| 1015 |
+
# ์์ธก ๊ธฐ๊ฐ์ ๊ฒฐ๊ณผ ์ถ๊ฐ
|
| 1016 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat'] = fc_df['yhat'].values
|
| 1017 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_lower'] = fc_df['yhat_lower'].values
|
| 1018 |
+
fc_df_monthly.loc[len(monthly_df):, 'yhat_upper'] = fc_df['yhat_upper'].values
|
| 1019 |
+
|
| 1020 |
+
# yearly, trend ์ปดํฌ๋ํธ ์ถ๊ฐ (Prophet ํธํ)
|
| 1021 |
+
fc_df_monthly['yearly'] = 0
|
| 1022 |
+
fc_df_monthly['trend'] = fc_df_monthly['yhat']
|
| 1023 |
+
|
| 1024 |
+
return fc_df_monthly
|
| 1025 |
+
|
| 1026 |
+
except Exception as e:
|
| 1027 |
+
st.error(f"Simple Exponential Smoothing ๋ชจ๋ธ ์ค๋ฅ: {str(e)}")
|
| 1028 |
+
return None
|
| 1029 |
+
|
| 1030 |
+
@st.cache_data(show_spinner=False, ttl=3600)
|
| 1031 |
+
def fit_optimal_model(df, item_name, horizon_end, model_type="primary"):
|
| 1032 |
+
"""ํ๋ชฉ๋ณ ์ต์ ๋ชจ๋ธ ์ ์ฉ"""
|
| 1033 |
+
# ๋ฐ์ดํฐ ์ค๋น ๋ฐ ์ ๋ฆฌ
|
| 1034 |
+
df = df.copy()
|
| 1035 |
+
df = df.dropna(subset=["date", "price"])
|
| 1036 |
+
|
| 1037 |
+
# ํ๋ชฉ๋ณ ์ต์ ๋ชจ๋ธ ์ ํ
|
| 1038 |
+
model_info = get_best_model_for_item(item_name)
|
| 1039 |
+
|
| 1040 |
+
if model_type == "primary":
|
| 1041 |
+
model_name = model_info["model1"]
|
| 1042 |
+
accuracy = model_info["accuracy1"]
|
| 1043 |
+
else: # backup
|
| 1044 |
+
model_name = model_info["model2"]
|
| 1045 |
+
accuracy = model_info["accuracy2"]
|
| 1046 |
+
|
| 1047 |
+
st.info(f"{item_name}์ ์ต์ ํ๋ {model_name} ๋ชจ๋ธ ์ ์ฉ (์ ํ๋: {accuracy}%)")
|
| 1048 |
+
|
| 1049 |
+
# ํน์ ์ฒ๋ฆฌ๊ฐ ํ์ํ ํ๋ชฉ ํ์ธ
|
| 1050 |
+
needs_monitoring = "special" in model_info and model_info["special"] == "accuracy_drop"
|
| 1051 |
+
if needs_monitoring:
|
| 1052 |
+
st.warning(f"โ ๏ธ {item_name}๋ ํน์ ์์ ์ ํ๋๊ฐ ๊ธ๋ฝํ ์ ์๋ ํ๋ชฉ์
๋๋ค. ์์ธก ๊ฒฐ๊ณผ๋ฅผ ์ฃผ์ ๊น๊ฒ ์ดํด๋ณด์ธ์.")
|
| 1053 |
+
|
| 1054 |
+
# ๋ชจ๋ธ ์ ํ ๋ฐ ํ์ต
|
| 1055 |
+
if "SARIMA(1,0,1)(1,0,1,12)" in model_name:
|
| 1056 |
+
return fit_sarima(df, order=(1,0,1), seasonal_order=(1,0,1,12), horizon_end=horizon_end)
|
| 1057 |
+
elif "SARIMA(1,1,1)(1,1,1,12)" in model_name:
|
| 1058 |
+
return fit_sarima(df, order=(1,1,1), seasonal_order=(1,1,1,12), horizon_end=horizon_end)
|
| 1059 |
+
elif "SARIMA(0,1,1)(0,1,1,12)" in model_name:
|
| 1060 |
+
return fit_sarima(df, order=(0,1,1), seasonal_order=(0,1,1,12), horizon_end=horizon_end)
|
| 1061 |
+
elif "ETS(Multiplicative)" in model_name:
|
| 1062 |
+
return fit_ets(df, seasonal_type="multiplicative", horizon_end=horizon_end)
|
| 1063 |
+
elif "ETS(Additive)" in model_name:
|
| 1064 |
+
return fit_ets(df, seasonal_type="additive", horizon_end=horizon_end)
|
| 1065 |
+
elif "Holt-Winters" in model_name:
|
| 1066 |
+
return fit_holt_winters(df, horizon_end=horizon_end)
|
| 1067 |
+
elif "Holt" in model_name:
|
| 1068 |
+
return fit_holt(df, horizon_end=horizon_end)
|
| 1069 |
+
elif "MovingAverage-6 m" in model_name:
|
| 1070 |
+
return fit_moving_average(df, window=6, horizon_end=horizon_end)
|
| 1071 |
+
elif "WeightedMA-6 m" in model_name:
|
| 1072 |
+
return fit_weighted_ma(df, window=6, horizon_end=horizon_end)
|
| 1073 |
+
elif "Naive" in model_name and "Seasonal" not in model_name:
|
| 1074 |
+
return fit_naive(df, horizon_end=horizon_end)
|
| 1075 |
+
elif "SeasonalNaive" in model_name:
|
| 1076 |
+
return fit_seasonal_naive(df, horizon_end=horizon_end)
|
| 1077 |
+
elif "Fourier + LR" in model_name:
|
| 1078 |
+
return fit_fourier_lr(df, horizon_end=horizon_end)
|
| 1079 |
+
elif "LinearTrend" in model_name:
|
| 1080 |
+
return fit_linear_trend(df, horizon_end=horizon_end)
|
| 1081 |
+
elif "SimpleExpSmoothing" in model_name:
|
| 1082 |
+
return fit_simple_exp_smoothing(df, horizon_end=horizon_end)
|
| 1083 |
+
else:
|
| 1084 |
+
st.warning(f"์ ์ ์๋ ๋ชจ๋ธ: {model_name}. ๊ธฐ๋ณธ ๋ชจ๋ธ(SARIMA)์ ์ฌ์ฉํฉ๋๋ค.")
|
| 1085 |
+
return fit_sarima(df, order=(1,0,1), seasonal_order=(1,0,1,12), horizon_end=horizon_end)
|
| 1086 |
+
|
| 1087 |
+
def fit_ensemble_model(df, item_name, horizon_end):
|
| 1088 |
+
"""1์์ 2์ ๋ชจ๋ธ์ ์์๋ธ ์ํ"""
|
| 1089 |
+
# 1์ ๋ชจ๋ธ ์์ธก
|
| 1090 |
+
fc1 = fit_optimal_model(df, item_name, horizon_end, model_type="primary")
|
| 1091 |
+
|
| 1092 |
+
# 2์ ๋ชจ๋ธ ์์ธก
|
| 1093 |
+
fc2 = fit_optimal_model(df, item_name, horizon_end, model_type="backup")
|
| 1094 |
+
|
| 1095 |
+
# ๋ ๋ชจ๋ธ ๋ชจ๋ ์ฑ๊ณตํ ๊ฒฝ์ฐ๋ง ์์๋ธ
|
| 1096 |
+
if fc1 is not None and fc2 is not None:
|
| 1097 |
+
# ์์๋ธ ๊ฐ์ค์น ๊ณ์ฐ (์ ํ๋ ๊ธฐ๋ฐ)
|
| 1098 |
+
model_info = get_best_model_for_item(item_name)
|
| 1099 |
+
acc1 = model_info["accuracy1"]
|
| 1100 |
+
acc2 = model_info["accuracy2"]
|
| 1101 |
+
|
| 1102 |
+
# ์ ํ๋ ์ฐจ์ด๊ฐ 0.2%p ์ด๋ด์ธ ๊ฒฝ์ฐ ์์๋ธ ์ํ
|
| 1103 |
+
accuracy_diff = abs(acc1 - acc2)
|
| 1104 |
+
|
| 1105 |
+
if accuracy_diff <= 0.2:
|
| 1106 |
+
st.success(f"๋ ๋ชจ๋ธ์ ์ ํ๋ ์ฐจ์ด๊ฐ {accuracy_diff:.2f}%p๋ก ์์ ์์๋ธ์ ์ํํฉ๋๋ค.")
|
| 1107 |
+
|
| 1108 |
+
# ์ ํ๋ ๊ธฐ๋ฐ ๊ฐ์ค์น ๊ณ์ฐ
|
| 1109 |
+
total_acc = acc1 + acc2
|
| 1110 |
+
w1 = acc1 / total_acc
|
| 1111 |
+
w2 = acc2 / total_acc
|
| 1112 |
+
|
| 1113 |
+
# ์์๋ธ ๊ฒฐ๊ณผ ์์ฑ
|
| 1114 |
+
fc_ensemble = fc1.copy()
|
| 1115 |
+
fc_ensemble['yhat'] = w1 * fc1['yhat'] + w2 * fc2['yhat']
|
| 1116 |
+
fc_ensemble['yhat_lower'] = w1 * fc1['yhat_lower'] + w2 * fc2['yhat_lower']
|
| 1117 |
+
fc_ensemble['yhat_upper'] = w1 * fc1['yhat_upper'] + w2 * fc2['yhat_upper']
|
| 1118 |
+
|
| 1119 |
+
return fc_ensemble
|
| 1120 |
+
else:
|
| 1121 |
+
st.info(f"์ ํ๋ ์ฐจ์ด๊ฐ {accuracy_diff:.2f}%p๋ก ์ปค์ 1์ ๋ชจ๋ธ๋ง ์ฌ์ฉํฉ๋๋ค.")
|
| 1122 |
+
return fc1
|
| 1123 |
+
|
| 1124 |
+
# ํ๋๋ผ๋ ์คํจํ ๊ฒฝ์ฐ ์ฑ๊ณตํ ๋ชจ๋ธ ๋ฐํ
|
| 1125 |
+
return fc1 if fc1 is not None else fc2
|
| 1126 |
|
| 1127 |
# -------------------------------------------------
|
| 1128 |
+
# MAIN APP ---------------------------------------
|
| 1129 |
# -------------------------------------------------
|
| 1130 |
+
# ๋ฐ์ดํฐ ๋ก๋
|
| 1131 |
raw_df = load_data()
|
| 1132 |
|
| 1133 |
if len(raw_df) == 0:
|
|
|
|
| 1139 |
current_date = date.today()
|
| 1140 |
st.sidebar.caption(f"์ค๋: {current_date}")
|
| 1141 |
|
| 1142 |
+
# ์ ํ๋ ํ๋ชฉ์ ์ต์ ๋ชจ๋ธ ์ ๋ณด ํ์
|
| 1143 |
+
model_info = get_best_model_for_item(selected_item)
|
| 1144 |
+
st.sidebar.subheader("ํ๋ชฉ๋ณ ์ต์ ๋ชจ๋ธ")
|
| 1145 |
+
st.sidebar.markdown(f"**1์ ๋ชจ๋ธ:** {model_info['model1']} (์ ํ๋: {model_info['accuracy1']}%)")
|
| 1146 |
+
st.sidebar.markdown(f"**2์ ๋ชจ๋ธ:** {model_info['model2']} (์ ํ๋: {model_info['accuracy2']}%)")
|
| 1147 |
+
|
| 1148 |
+
# ๋ฐ์ดํฐ ํํฐ๋ง
|
| 1149 |
item_df = raw_df.query("item == @selected_item").copy()
|
| 1150 |
if item_df.empty:
|
| 1151 |
st.error("์ ํํ ํ๋ชฉ ๋ฐ์ดํฐ ์์")
|
|
|
|
| 1180 |
|
| 1181 |
if len(macro_df) < 2:
|
| 1182 |
st.warning(f"{selected_item}์ ๋ํ ๋ฐ์ดํฐ๊ฐ ์ถฉ๋ถํ์ง ์์ต๋๋ค. ์ ์ฒด ๊ธฐ๊ฐ ๋ฐ์ดํฐ๋ฅผ ํ์ํฉ๋๋ค.")
|
| 1183 |
+
fig = go.Figure()
|
| 1184 |
+
fig.add_trace(go.Scatter(x=item_df["date"], y=item_df["price"], mode="lines", name="์ค์ ๊ฐ๊ฒฉ"))
|
| 1185 |
+
fig.update_layout(title=f"{selected_item} ๊ณผ๊ฑฐ ๊ฐ๊ฒฉ")
|
| 1186 |
st.plotly_chart(fig, use_container_width=True)
|
| 1187 |
else:
|
| 1188 |
try:
|
| 1189 |
+
# ๋ฐ์ดํฐ ์ถฉ๋ถํ ๊ฒฝ์ฐ ํ๋ชฉ๋ณ ์ต์ ๋ชจ๋ธ ์ฌ์ฉ
|
| 1190 |
+
use_ensemble = st.checkbox("์์๋ธ ๋ชจ๋ธ ์ฌ์ฉ (1์ + 2์ ๋ชจ๋ธ ๊ฒฐํฉ)", value=False)
|
| 1191 |
+
|
| 1192 |
with st.spinner("์ฅ๊ธฐ ์์ธก ๋ชจ๋ธ ์์ฑ ์ค..."):
|
| 1193 |
+
if use_ensemble:
|
| 1194 |
+
fc_macro = fit_ensemble_model(macro_df, selected_item, MACRO_END)
|
| 1195 |
+
else:
|
| 1196 |
+
fc_macro = fit_optimal_model(macro_df, selected_item, MACRO_END)
|
| 1197 |
|
| 1198 |
+
if fc_macro is not None:
|
| 1199 |
# ์ค์ ๋ฐ์ดํฐ์ ์์ธก ๋ฐ์ดํฐ ๊ตฌ๋ถ
|
| 1200 |
cutoff_date = pd.Timestamp("2025-01-01")
|
| 1201 |
|
|
|
|
| 1213 |
line=dict(color="blue", width=2)
|
| 1214 |
))
|
| 1215 |
|
| 1216 |
+
# ์์ธก ๊ธฐ๊ฐ ์๋ฅด๊ธฐ
|
| 1217 |
forecast_data = fc_macro[fc_macro["ds"] >= cutoff_date].copy()
|
| 1218 |
+
|
| 1219 |
+
# 2025-2030 ์์ธก ๋ฐ์ดํฐ
|
| 1220 |
if not forecast_data.empty:
|
| 1221 |
fig.add_trace(go.Scatter(
|
| 1222 |
x=forecast_data["ds"],
|
|
|
|
| 1244 |
name="95% ์ ๋ขฐ ๊ตฌ๊ฐ"
|
| 1245 |
))
|
| 1246 |
|
| 1247 |
+
# ์์ ์์ธก๊ฐ ์ ๊ฑฐ
|
| 1248 |
+
fig.update_yaxes(range=[0, None])
|
| 1249 |
+
|
| 1250 |
# ๋ ์ด์์ ์ค์
|
| 1251 |
fig.update_layout(
|
| 1252 |
title=f"{selected_item} ์ฅ๊ธฐ ๊ฐ๊ฒฉ ์์ธก (1996-2030)",
|
|
|
|
| 1282 |
st.error(f"์์ธก๊ฐ ๊ณ์ฐ ์ค๋ฅ: {str(e)}")
|
| 1283 |
else:
|
| 1284 |
st.warning("์์ธก ๋ชจ๋ธ์ ์์ฑํ ์ ์์ต๋๋ค.")
|
| 1285 |
+
fig = go.Figure()
|
| 1286 |
+
fig.add_trace(go.Scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="์ค์ ๊ฐ๊ฒฉ"))
|
| 1287 |
+
fig.update_layout(title=f"{selected_item} ๊ณผ๊ฑฐ ๊ฐ๊ฒฉ")
|
| 1288 |
st.plotly_chart(fig, use_container_width=True)
|
| 1289 |
except Exception as e:
|
| 1290 |
st.error(f"์ฅ๊ธฐ ์์ธก ์ค๋ฅ ๋ฐ์: {str(e)}")
|
| 1291 |
+
import traceback
|
| 1292 |
+
st.code(traceback.format_exc())
|
| 1293 |
+
fig = go.Figure()
|
| 1294 |
+
fig.add_trace(go.Scatter(x=macro_df["date"], y=macro_df["price"], mode="lines", name="์ค์ ๊ฐ๊ฒฉ"))
|
| 1295 |
+
fig.update_layout(title=f"{selected_item} ๊ณผ๊ฑฐ ๊ฐ๊ฒฉ")
|
| 1296 |
st.plotly_chart(fig, use_container_width=True)
|
| 1297 |
|
| 1298 |
# -------------------------------------------------
|
|
|
|
| 1314 |
|
| 1315 |
if len(micro_df) < 2:
|
| 1316 |
st.warning(f"์ต๊ทผ ๋ฐ์ดํฐ๊ฐ ์ถฉ๋ถํ์ง ์์ต๋๋ค.")
|
| 1317 |
+
fig = go.Figure()
|
| 1318 |
+
fig.add_trace(go.Scatter(x=item_df["date"], y=item_df["price"], mode="lines", name="์ค์ ๊ฐ๊ฒฉ"))
|
| 1319 |
+
fig.update_layout(title=f"{selected_item} ์ต๊ทผ ๊ฐ๊ฒฉ")
|
| 1320 |
st.plotly_chart(fig, use_container_width=True)
|
| 1321 |
else:
|
| 1322 |
try:
|
| 1323 |
with st.spinner("๋จ๊ธฐ ์์ธก ๋ชจ๋ธ ์์ฑ ์ค..."):
|
| 1324 |
+
if use_ensemble:
|
| 1325 |
+
fc_micro = fit_ensemble_model(micro_df, selected_item, MICRO_END)
|
| 1326 |
+
else:
|
| 1327 |
+
fc_micro = fit_optimal_model(micro_df, selected_item, MICRO_END)
|
| 1328 |
|
| 1329 |
+
if fc_micro is not None:
|
| 1330 |
# 2024-01-01๋ถํฐ 2026-12-31๊น์ง ํํฐ๋ง
|
| 1331 |
start_date = pd.Timestamp("2024-01-01")
|
| 1332 |
end_date = pd.Timestamp("2026-12-31")
|
|
|
|
| 1400 |
name="95% ์ ๋ขฐ ๊ตฌ๊ฐ"
|
| 1401 |
))
|
| 1402 |
|
| 1403 |
+
# ์์ ์์ธก๊ฐ ์ ๊ฑฐ
|
| 1404 |
+
fig.update_yaxes(range=[0, None])
|
| 1405 |
+
|
| 1406 |
# ๋ ์ด์์ ์ค์
|
| 1407 |
fig.update_layout(
|
| 1408 |
title=f"{selected_item} ์๋ณ ๋จ๊ธฐ ์์ธก (2024-2026)",
|
|
|
|
| 1463 |
# -------------------------------------------------
|
| 1464 |
# SEASONALITY & PATTERN ---------------------------
|
| 1465 |
# -------------------------------------------------
|
| 1466 |
+
if 'fc_micro' in locals() and fc_micro is not None:
|
| 1467 |
+
with st.expander("๐ ์์ฆ๋๋ฆฌํฐ & ํจํด ์ค๋ช
"):
|
| 1468 |
try:
|
| 1469 |
+
# ์๋ณ ๊ณ์ ์ฑ ๋ถ์
|
| 1470 |
+
if "yearly" in fc_micro.columns and fc_micro["yearly"].sum() != 0:
|
| 1471 |
+
month_season = fc_micro.copy()
|
| 1472 |
+
month_season["month"] = month_season["ds"].dt.month
|
| 1473 |
+
month_seasonality = month_season.groupby("month")["yearly"].mean()
|
| 1474 |
+
|
| 1475 |
+
# ์ ์ด๋ฆ ์ค์
|
| 1476 |
+
month_names = ["1์", "2์", "3์", "4์", "5์", "6์", "7์", "8์", "9์", "10์", "11์", "12์"]
|
| 1477 |
+
|
| 1478 |
+
# ๊ณ์ ์ฑ ์ฐจํธ ๊ทธ๋ฆฌ๊ธฐ
|
| 1479 |
+
fig = go.Figure()
|
| 1480 |
+
fig.add_trace(go.Bar(
|
| 1481 |
+
x=month_names,
|
| 1482 |
+
y=month_seasonality.values,
|
| 1483 |
+
marker_color=['blue' if x >= 0 else 'red' for x in month_seasonality.values]
|
| 1484 |
+
))
|
| 1485 |
+
|
| 1486 |
+
fig.update_layout(
|
| 1487 |
+
title=f"{selected_item} ์๋ณ ๊ณ์ ์ฑ ํจํด",
|
| 1488 |
+
xaxis_title="์",
|
| 1489 |
+
yaxis_title="์๋์ ๊ฐ๊ฒฉ ๋ณ๋",
|
| 1490 |
+
)
|
| 1491 |
+
|
| 1492 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 1493 |
+
|
| 1494 |
+
# ํผํฌ์ ์ ์ ๊ณ์ฐ
|
| 1495 |
+
peak_month = month_seasonality.idxmax()
|
| 1496 |
+
low_month = month_seasonality.idxmin()
|
| 1497 |
+
seasonality_range = month_seasonality.max() - month_seasonality.min()
|
| 1498 |
+
|
| 1499 |
+
st.markdown(
|
| 1500 |
+
f"**์ฐ๊ฐ ํผํฌ ์:** {month_names[peak_month-1]} \n"
|
| 1501 |
+
f"**์ฐ๊ฐ ์ ์ ์:** {month_names[low_month-1]} \n"
|
| 1502 |
+
f"**์ฐ๊ฐ ๋ณ๋ํญ:** {seasonality_range:.1f}")
|
| 1503 |
+
|
| 1504 |
+
# ๊ณ์ ์ฑ์ด ๋์ ํ๋ชฉ์ธ์ง ์ค๋ช
|
| 1505 |
+
if abs(seasonality_range) > 30:
|
| 1506 |
+
st.info(f"{selected_item}์(๋) ๊ณ์ ์ฑ์ด ๋งค์ฐ ๊ฐํ ํ๋ชฉ์
๋๋ค. ํน์ ๋ฌ์ ๊ฐ๊ฒฉ์ด ํฌ๊ฒ ๋ณ๋ํ ์ ์์ต๋๋ค.")
|
| 1507 |
+
elif abs(seasonality_range) > 10:
|
| 1508 |
+
st.info(f"{selected_item}์(๋) ๊ณ์ ์ฑ์ด ์ค๊ฐ ์ ๋์ธ ํ๋ชฉ์
๋๋ค.")
|
| 1509 |
+
else:
|
| 1510 |
+
st.info(f"{selected_item}์(๋) ๊ณ์ ์ฑ์ด ์ฝํ ํ๋ชฉ์
๋๋ค. ์ฐ์ค ๊ฐ๊ฒฉ์ด ๋น๊ต์ ์์ ์ ์
๋๋ค.")
|
| 1511 |
except Exception as e:
|
| 1512 |
+
st.error(f"๊ณ์ ์ฑ ๋ถ์ ์ค๋ฅ: {str(e)}")
|
| 1513 |
+
st.info("์ด ํ๋ชฉ์ ๋ํ ๊ณ์ ์ฑ ํจํด์ ๋ถ์ํ ์ ์์ต๋๋ค.")
|
|
|
|
| 1514 |
|
| 1515 |
# -------------------------------------------------
|
| 1516 |
# FOOTER ------------------------------------------
|