Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from PIL import Image | |
| import os | |
| import spaces | |
| from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
| from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline | |
| from kolors.models.modeling_chatglm import ChatGLMModel | |
| from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
| from kolors.models.unet_2d_condition import UNet2DConditionModel | |
| from diffusers import AutoencoderKL, EulerDiscreteScheduler | |
| from huggingface_hub import snapshot_download | |
| device = "cuda" | |
| root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
| ckpt_dir = f'{root_dir}/weights/Kolors' | |
| snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir) | |
| snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus") | |
| # Load models | |
| text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
| tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
| vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
| scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
| unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', | |
| ignore_mismatched_sizes=True | |
| ).to(dtype=torch.float16, device=device) | |
| ip_img_size = 336 | |
| clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) | |
| pipe = StableDiffusionXLPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=clip_image_processor, | |
| force_zeros_for_empty_prompt=False | |
| ).to(device) | |
| if hasattr(pipe.unet, 'encoder_hid_proj'): | |
| pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj | |
| pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # ---------------------------------------------- | |
| # ์์ ๋ ๋ถ๋ถ: infer ํจ์ ๋ด์์ hidden_prompt๋ฅผ ์์ ์ถ๊ฐ | |
| # ---------------------------------------------- | |
| def infer( | |
| user_prompt, | |
| ip_adapter_image, | |
| ip_adapter_scale=0.5, | |
| negative_prompt="", | |
| seed=100, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=5.0, | |
| num_inference_steps=50, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| # ์จ๊ฒจ์ง(๊ธฐ๋ณธ/ํ์) ํ๋กฌํํธ | |
| hidden_prompt = ( | |
| "Studio Ghibli animation style, featuring whimsical characters with expressive eyes " | |
| "and fluid movements. Lush, detailed natural environments with ethereal lighting " | |
| "and soft color palettes of blues, greens, and warm earth tones." | |
| ) | |
| # ์ค์ ๋ก ํ์ดํ๋ผ์ธ์ ์ ๋ฌํ ์ต์ข ํ๋กฌํํธ | |
| prompt = f"{hidden_prompt}, {user_prompt}" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| pipe.to("cuda") | |
| image_encoder.to("cuda") | |
| pipe.image_encoder = image_encoder | |
| pipe.set_ip_adapter_scale([ip_adapter_scale]) | |
| image = pipe( | |
| prompt=prompt, | |
| ip_adapter_image=[ip_adapter_image], | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| [ | |
| "dancing", | |
| "gh1.jpg", | |
| 0.5 | |
| ], | |
| [ | |
| "studio ghibli style", | |
| "gh2.jpg", | |
| 0.5 | |
| ], | |
| [ | |
| "studio ghibli style", | |
| "gh3.webp", | |
| 0.5 | |
| ], | |
| [ | |
| "studio ghibli style", | |
| "gh4.jpg", | |
| 0.5 | |
| ], | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 720px; | |
| } | |
| #result img{ | |
| object-position: top; | |
| } | |
| #result .image-container{ | |
| height: 100% | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Beyond Ghibli Reimagined | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Row(): | |
| with gr.Column(): | |
| ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") | |
| ip_adapter_scale = gr.Slider( | |
| label="Image influence scale", | |
| info="Use 1 for creating variations", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.5, | |
| ) | |
| result = gr.Image(label="Result", elem_id="result") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder=( | |
| "Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, " | |
| "missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, " | |
| "normal quality, jpeg artifacts, signature, watermark, username, blurry, " | |
| "artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, " | |
| "3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)" | |
| ), | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[prompt, ip_adapter_image, ip_adapter_scale], | |
| outputs=[result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| ip_adapter_image, | |
| ip_adapter_scale, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps | |
| ], | |
| outputs=[result, seed] | |
| ) | |
| demo.queue().launch() | |