Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,679 Bytes
ec118f6 7b4dc6f ec118f6 79d88c4 ec118f6 79d88c4 0329637 7b4dc6f 0329637 79d88c4 0329637 79d88c4 c260fe0 ec118f6 c260fe0 79d88c4 0329637 ec118f6 914dc02 36737d5 ec118f6 36737d5 79d88c4 0329637 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 85ad908 36737d5 ec118f6 36737d5 ec118f6 36737d5 1fb410d 36737d5 ec118f6 0329637 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 36737d5 ec118f6 0329637 ec118f6 36737d5 ec118f6 36737d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm
import cv2
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.schedulers import EulerDiscreteScheduler
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
from src.utils.util import save_videos_grid, seed_everything
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
from src.models.base.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel, add_ip_adapters
from src.pipelines.pipeline_sonic import SonicPipeline
from src.models.audio_adapter.audio_proj import AudioProjModel
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
from src.dataset.face_align.align import AlignImage
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
def test(
pipe,
config,
wav_enc,
audio_pe,
audio2bucket,
image_encoder,
width,
height,
batch
):
"""Run one forward pass to generate the video tensor."""
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(pipe.device).float()
ref_img = batch['ref_img']
clip_img = batch['clip_images']
face_mask = batch['face_mask']
image_embeds = image_encoder(clip_img).image_embeds
audio_feature = batch['audio_feature']
audio_len = batch['audio_len']
step = int(config.step)
window = 3000
audio_prompts = []
last_audio_prompts = []
for i in range(0, audio_feature.shape[-1], window):
audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i + window], output_hidden_states=True).hidden_states
last_audio_prompt = wav_enc.encoder(audio_feature[:, :, i:i + window]).last_hidden_state
last_audio_prompt = last_audio_prompt.unsqueeze(-2)
audio_prompt = torch.stack(audio_prompt, dim=2)
audio_prompts.append(audio_prompt)
last_audio_prompts.append(last_audio_prompt)
audio_prompts = torch.cat(audio_prompts, dim=1)
audio_prompts = audio_prompts[:, :audio_len * 2]
audio_prompts = torch.cat([torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
torch.zeros_like(audio_prompts[:, :6])], 1)
last_audio_prompts = torch.cat(last_audio_prompts, dim=1)
last_audio_prompts = last_audio_prompts[:, :audio_len * 2]
last_audio_prompts = torch.cat([torch.zeros_like(last_audio_prompts[:, :24]), last_audio_prompts,
torch.zeros_like(last_audio_prompts[:, :26])], 1)
ref_tensor_list = []
audio_tensor_list = []
uncond_audio_tensor_list = []
motion_buckets = []
for i in tqdm(range(audio_len // step)):
audio_clip = audio_prompts[:, i * 2 * step:i * 2 * step + 10].unsqueeze(0)
audio_clip_for_bucket = last_audio_prompts[:, i * 2 * step:i * 2 * step + 50].unsqueeze(0)
motion_bucket = audio2bucket(audio_clip_for_bucket, image_embeds)
motion_bucket = motion_bucket * 16 + 16
motion_buckets.append(motion_bucket[0])
cond_audio_clip = audio_pe(audio_clip).squeeze(0)
uncond_audio_clip = audio_pe(torch.zeros_like(audio_clip)).squeeze(0)
ref_tensor_list.append(ref_img[0])
audio_tensor_list.append(cond_audio_clip[0])
uncond_audio_tensor_list.append(uncond_audio_clip[0])
video = pipe(
ref_img,
clip_img,
face_mask,
audio_tensor_list,
uncond_audio_tensor_list,
motion_buckets,
height=height,
width=width,
num_frames=len(audio_tensor_list),
decode_chunk_size=config.decode_chunk_size,
motion_bucket_scale=config.motion_bucket_scale,
fps=config.fps,
noise_aug_strength=config.noise_aug_strength,
min_guidance_scale1=config.min_appearance_guidance_scale,
max_guidance_scale1=config.max_appearance_guidance_scale,
min_guidance_scale2=config.audio_guidance_scale,
max_guidance_scale2=config.audio_guidance_scale,
overlap=config.overlap,
shift_offset=config.shift_offset,
frames_per_batch=config.n_sample_frames,
num_inference_steps=config.num_inference_steps,
i2i_noise_strength=config.i2i_noise_strength
).frames
video = (video * 0.5 + 0.5).clamp(0, 1)
video = torch.cat([video.to(pipe.device)], dim=0).cpu()
return video
class Sonic:
"""Wrapper class for the Sonic portrait animation pipeline."""
config_file = os.path.join(BASE_DIR, 'config/inference/sonic.yaml')
config = OmegaConf.load(config_file)
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
# --------- load config & device ---------
config = self.config
config.use_interframe = enable_interpolate_frame
device = f'cuda:{device_id}' if device_id > -1 else 'cpu'
self.device = device
# --------- Model paths ---------
config.pretrained_model_name_or_path = os.path.join(BASE_DIR, config.pretrained_model_name_or_path)
# --------- Load sub‑modules ---------
vae = AutoencoderKLTemporalDecoder.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="vae",
variant="fp16"
)
val_noise_scheduler = EulerDiscreteScheduler.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="scheduler"
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="image_encoder",
variant="fp16"
)
unet = UNetSpatioTemporalConditionModel.from_pretrained(
config.pretrained_model_name_or_path,
subfolder="unet",
variant="fp16"
)
add_ip_adapters(unet, [32], [config.ip_audio_scale])
audio2token = AudioProjModel(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=1024,
context_tokens=32).to(device)
audio2bucket = Audio2bucketModel(seq_len=50, blocks=1, channels=384, clip_channels=1024, intermediate_dim=1024,
output_dim=1, context_tokens=2).to(device)
# --------- Load checkpoints ---------
unet_ckpt = torch.load(os.path.join(BASE_DIR, config.unet_checkpoint_path), map_location="cpu")
audio2token_ckpt = torch.load(os.path.join(BASE_DIR, config.audio2token_checkpoint_path), map_location="cpu")
audio2bucket_ckpt = torch.load(os.path.join(BASE_DIR, config.audio2bucket_checkpoint_path), map_location="cpu")
unet.load_state_dict(unet_ckpt, strict=True)
audio2token.load_state_dict(audio2token_ckpt, strict=True)
audio2bucket.load_state_dict(audio2bucket_ckpt, strict=True)
# --------- dtype ---------
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
else:
raise ValueError(f"Unsupported weight dtype: {config.weight_dtype}")
# --------- Whisper encoder for audio ---------
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/')).to(device).eval()
whisper.requires_grad_(False)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, 'checkpoints/whisper-tiny/'))
# --------- Face detector & frame interpolator ---------
det_path = os.path.join(BASE_DIR, 'checkpoints/yoloface_v5m.pt')
self.face_det = AlignImage(device, det_path=det_path)
if config.use_interframe:
self.rife = RIFEModel(device=device)
self.rife.load_model(os.path.join(BASE_DIR, 'checkpoints', 'RIFE/'))
# --------- Move modules to device & dtype ---------
image_encoder.to(weight_dtype)
vae.to(weight_dtype)
unet.to(weight_dtype)
# --------- Compose pipeline ---------
pipe = SonicPipeline(
unet=unet,
image_encoder=image_encoder,
vae=vae,
scheduler=val_noise_scheduler,
)
self.pipe = pipe.to(device=device, dtype=weight_dtype)
self.whisper = whisper
self.audio2token = audio2token
self.audio2bucket = audio2bucket
self.image_encoder = image_encoder
print('Sonic initialization complete.')
# -------------------------- Public helpers --------------------------
def preprocess(self, image_path: str, expand_ratio: float = 1.0):
"""Detect face and compute crop bbox (optional)."""
face_image = cv2.imread(image_path)
h, w = face_image.shape[:2]
_, _, bboxes = self.face_det(face_image, maxface=True)
face_num = len(bboxes)
bbox_s = []
if face_num > 0:
x1, y1, ww, hh = bboxes[0]
x2, y2 = x1 + ww, y1 + hh
bbox = x1, y1, x2, y2
bbox_s = process_bbox(bbox, expand_radio=expand_ratio, height=h, width=w)
return {
'face_num': face_num,
'crop_bbox': bbox_s,
}
def crop_image(self, input_image_path: str, output_image_path: str, crop_bbox):
face_image = cv2.imread(input_image_path)
crop_image = face_image[crop_bbox[1]:crop_bbox[3], crop_bbox[0]:crop_bbox[2]]
cv2.imwrite(output
|