File size: 31,548 Bytes
d48cdf4
 
 
 
 
9dddfec
d48cdf4
 
0ea9032
 
d48cdf4
 
 
 
 
 
 
507fad1
 
8fa1eef
507fad1
c6c9a50
 
9dddfec
 
 
 
 
 
 
 
 
5510c43
0ea9032
5510c43
ac92569
5510c43
1e394d0
a12c96b
1e394d0
 
a12c96b
6977531
a12c96b
 
 
 
1e394d0
 
 
 
5510c43
d07df81
0ea9032
5510c43
 
 
0ea9032
 
5510c43
 
 
d07df81
444ad96
5510c43
 
 
d07df81
5510c43
444ad96
 
5510c43
d07df81
 
 
 
 
 
 
 
 
9aac221
d07df81
 
 
 
 
 
5510c43
d07df81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5510c43
d07df81
 
 
 
 
5510c43
444ad96
 
 
 
f7748ac
5510c43
444ad96
 
 
 
f7748ac
444ad96
f7748ac
444ad96
f7748ac
 
0d4c8dd
f7748ac
444ad96
d07df81
f7748ac
 
0d4c8dd
 
 
 
 
 
f7748ac
 
 
0d4c8dd
f7748ac
d07df81
5510c43
 
 
 
 
ac92569
0ea9032
ac92569
42893c3
 
7b54c59
6977531
d48cdf4
 
2b2c22c
 
 
9dddfec
d48cdf4
 
 
507fad1
ac92569
507fad1
ac92569
8fa1eef
ac92569
 
 
8fa1eef
 
5ff87dd
 
507fad1
8fa1eef
 
2b2c22c
8fa1eef
 
 
 
 
ac92569
 
 
8fa1eef
 
507fad1
8fa1eef
 
2b2c22c
8fa1eef
 
 
 
c6c9a50
ac92569
895b1a9
ac92569
507fad1
c6c9a50
 
 
5ff87dd
 
 
507fad1
 
 
5ff87dd
 
 
 
 
c6c9a50
 
 
507fad1
 
 
 
 
 
c6c9a50
ac92569
507fad1
ac92569
d48cdf4
 
 
 
 
 
5ff87dd
d48cdf4
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
 
d48cdf4
 
 
 
8fa1eef
 
2b2c22c
8fa1eef
 
 
d48cdf4
 
 
77b4bdf
d48cdf4
 
 
 
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
 
77b4bdf
d48cdf4
 
 
ac92569
9dddfec
ac92569
d48cdf4
 
 
 
ac92569
77f7fca
507fad1
d48cdf4
 
 
 
 
9dddfec
 
d48cdf4
 
 
5ff87dd
 
507fad1
d48cdf4
 
 
 
9dddfec
d48cdf4
9dddfec
 
d48cdf4
507fad1
 
d48cdf4
 
9dddfec
d48cdf4
 
9dddfec
 
d48cdf4
 
ac92569
507fad1
ac92569
d48cdf4
 
 
 
5ff87dd
 
 
d48cdf4
5ff87dd
 
d48cdf4
 
 
c6c9a50
 
 
d48cdf4
 
 
ac92569
507fad1
ac92569
5ff87dd
 
 
 
 
 
 
ac92569
 
 
 
 
 
5ff87dd
9dddfec
 
 
d48cdf4
9dddfec
d48cdf4
5ff87dd
 
8fa1eef
 
c6c9a50
77b4bdf
507fad1
77b4bdf
8fa1eef
 
 
77b4bdf
8fa1eef
 
 
d48cdf4
c6c9a50
507fad1
 
c6c9a50
77b4bdf
9dddfec
 
 
 
77b4bdf
5ff87dd
 
ac92569
1e394d0
9dddfec
c6c9a50
8fa1eef
 
77b4bdf
9dddfec
d48cdf4
5ff87dd
ac92569
507fad1
ac92569
d48cdf4
 
507fad1
d48cdf4
 
 
 
 
 
 
 
 
 
5ff87dd
 
 
 
 
 
1e394d0
5ff87dd
 
 
d48cdf4
 
 
9dddfec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac92569
0ea9032
ac92569
d48cdf4
5510c43
 
 
 
 
 
 
 
1e394d0
d48cdf4
 
 
 
9dddfec
 
5ff87dd
0ea9032
 
5a98a93
0ea9032
 
 
1e394d0
 
 
0ea9032
 
 
 
5ea1450
0d4c8dd
0e80363
0d4c8dd
 
 
 
 
0e80363
1e394d0
0ea9032
5510c43
5ff87dd
0ea9032
 
 
 
 
 
5ff87dd
0ea9032
9dddfec
 
 
5ff87dd
 
 
 
 
 
 
 
 
 
 
 
9dddfec
 
 
 
 
 
 
5ff87dd
 
0d4c8dd
5ff87dd
 
 
0ea9032
6977531
5ff87dd
 
 
 
 
 
ac92569
5ff87dd
 
0d4c8dd
9dddfec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6977531
 
0d4c8dd
ac92569
cdd2c63
ac92569
d48cdf4
 
 
cdd2c63
ecd7689
 
 
ac92569
f9f2d2e
 
14d290c
 
cdd2c63
14d290c
 
ac92569
f9f2d2e
 
cdd2c63
be95d26
f9f2d2e
ac92569
ec629d4
 
cdd2c63
ec629d4
 
ac92569
f9f2d2e
 
cdd2c63
be95d26
f9f2d2e
ac92569
f9f2d2e
 
cdd2c63
4ab243c
f9f2d2e
ac92569
f9f2d2e
 
cdd2c63
4ab243c
f9f2d2e
ac92569
f9f2d2e
 
cdd2c63
f9f2d2e
 
 
 
 
 
 
 
 
d48cdf4
 
cdd2c63
4ab243c
f9f2d2e
ac92569
f9f2d2e
 
cdd2c63
f9f2d2e
 
 
 
 
cdd2c63
f9f2d2e
 
 
 
 
cdd2c63
f9f2d2e
 
b54f448
d48cdf4
 
ac92569
5a98a93
ac92569
5510c43
0e3a388
5510c43
a65c126
5510c43
0e3a388
 
 
5510c43
5a98a93
0e3a388
 
5510c43
a65c126
0e3a388
f76e5e4
0e3a388
 
 
 
5510c43
f76e5e4
5510c43
f76e5e4
 
 
5510c43
 
 
 
 
 
 
f76e5e4
0e3a388
f76e5e4
 
 
0e3a388
 
f76e5e4
0e3a388
f76e5e4
0e3a388
f76e5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65c126
f76e5e4
a65c126
 
f76e5e4
a65c126
f76e5e4
a65c126
f76e5e4
a65c126
5510c43
f76e5e4
 
 
 
 
 
 
 
 
 
5510c43
b018faf
5510c43
6ae2f8c
5510c43
a714b7a
0d4c8dd
6d3b20d
5510c43
b018faf
5510c43
0d4c8dd
2a84822
 
5510c43
2a84822
 
 
 
 
d48cdf4
2a84822
 
 
216d108
2a84822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a98a93
2a84822
 
 
 
 
 
 
 
 
 
 
 
 
5510c43
a12c96b
5a98a93
cdd2c63
2a84822
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
#!/usr/bin/env python

import os
import re
import tempfile
import gc  # garbage collector ์ถ”๊ฐ€
from collections.abc import Iterator
from threading import Thread
import json
import requests
import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

# CSV/TXT ๋ถ„์„
import pandas as pd
# PDF ํ…์ŠคํŠธ ์ถ”์ถœ
import PyPDF2

##############################################################################
# ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ ํ•จ์ˆ˜ ์ถ”๊ฐ€
##############################################################################
def clear_cuda_cache():
    """CUDA ์บ์‹œ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ๋น„์›๋‹ˆ๋‹ค."""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

##############################################################################
# SERPHouse API key from environment variable
##############################################################################
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")

##############################################################################
# ๊ฐ„๋‹จํ•œ ํ‚ค์›Œ๋“œ ์ถ”์ถœ ํ•จ์ˆ˜ (ํ•œ๊ธ€ + ์•ŒํŒŒ๋ฒณ + ์ˆซ์ž + ๊ณต๋ฐฑ ๋ณด์กด)
##############################################################################
def extract_keywords(text: str, top_k: int = 5) -> str:
    """
    1) ํ•œ๊ธ€(๊ฐ€-ํžฃ), ์˜์–ด(a-zA-Z), ์ˆซ์ž(0-9), ๊ณต๋ฐฑ๋งŒ ๋‚จ๊น€
    2) ๊ณต๋ฐฑ ๊ธฐ์ค€ ํ† ํฐ ๋ถ„๋ฆฌ
    3) ์ตœ๋Œ€ top_k๊ฐœ๋งŒ
    """
    text = re.sub(r"[^a-zA-Z0-9๊ฐ€-ํžฃ\s]", "", text)
    tokens = text.split()
    key_tokens = tokens[:top_k]
    return " ".join(key_tokens)

##############################################################################
# SerpHouse Live endpoint ํ˜ธ์ถœ
# - ์ƒ์œ„ 20๊ฐœ ๊ฒฐ๊ณผ JSON์„ LLM์— ๋„˜๊ธธ ๋•Œ link, snippet ๋“ฑ ๋ชจ๋‘ ํฌํ•จ
##############################################################################
def do_web_search(query: str) -> str:
    """
    ์ƒ์œ„ 20๊ฐœ 'organic' ๊ฒฐ๊ณผ item ์ „์ฒด(์ œ๋ชฉ, link, snippet ๋“ฑ)๋ฅผ
    JSON ๋ฌธ์ž์—ด ํ˜•ํƒœ๋กœ ๋ฐ˜ํ™˜
    """
    try:
        url = "https://api.serphouse.com/serp/live"
        
        # ๊ธฐ๋ณธ GET ๋ฐฉ์‹์œผ๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ„์†Œํ™”ํ•˜๊ณ  ๊ฒฐ๊ณผ ์ˆ˜๋ฅผ 20๊ฐœ๋กœ ์ œํ•œ
        params = {
            "q": query,
            "domain": "google.com",
            "serp_type": "web",  # ๊ธฐ๋ณธ ์›น ๊ฒ€์ƒ‰
            "device": "desktop",
            "lang": "en",
            "num": "20"  # ์ตœ๋Œ€ 20๊ฐœ ๊ฒฐ๊ณผ๋งŒ ์š”์ฒญ
        }
        
        headers = {
            "Authorization": f"Bearer {SERPHOUSE_API_KEY}"
        }
        
        logger.info(f"SerpHouse API ํ˜ธ์ถœ ์ค‘... ๊ฒ€์ƒ‰์–ด: {query}")
        logger.info(f"์š”์ฒญ URL: {url} - ํŒŒ๋ผ๋ฏธํ„ฐ: {params}")
        
        # GET ์š”์ฒญ ์ˆ˜ํ–‰
        response = requests.get(url, headers=headers, params=params, timeout=60)
        response.raise_for_status()
        
        logger.info(f"SerpHouse API ์‘๋‹ต ์ƒํƒœ ์ฝ”๋“œ: {response.status_code}")
        data = response.json()
        
        # ๋‹ค์–‘ํ•œ ์‘๋‹ต ๊ตฌ์กฐ ์ฒ˜๋ฆฌ
        results = data.get("results", {})
        organic = None
        
        # ๊ฐ€๋Šฅํ•œ ์‘๋‹ต ๊ตฌ์กฐ 1
        if isinstance(results, dict) and "organic" in results:
            organic = results["organic"]
        
        # ๊ฐ€๋Šฅํ•œ ์‘๋‹ต ๊ตฌ์กฐ 2 (์ค‘์ฒฉ๋œ results)
        elif isinstance(results, dict) and "results" in results:
            if isinstance(results["results"], dict) and "organic" in results["results"]:
                organic = results["results"]["organic"]
        
        # ๊ฐ€๋Šฅํ•œ ์‘๋‹ต ๊ตฌ์กฐ 3 (์ตœ์ƒ์œ„ organic)
        elif "organic" in data:
            organic = data["organic"]
            
        if not organic:
            logger.warning("์‘๋‹ต์—์„œ organic ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
            logger.debug(f"์‘๋‹ต ๊ตฌ์กฐ: {list(data.keys())}")
            if isinstance(results, dict):
                logger.debug(f"results ๊ตฌ์กฐ: {list(results.keys())}")
            return "No web search results found or unexpected API response structure."

        # ๊ฒฐ๊ณผ ์ˆ˜ ์ œํ•œ ๋ฐ ์ปจํ…์ŠคํŠธ ๊ธธ์ด ์ตœ์ ํ™”
        max_results = min(20, len(organic))
        limited_organic = organic[:max_results]
        
        # ๊ฒฐ๊ณผ ํ˜•์‹ ๊ฐœ์„  - ๋งˆํฌ๋‹ค์šด ํ˜•์‹์œผ๋กœ ์ถœ๋ ฅํ•˜์—ฌ ๊ฐ€๋…์„ฑ ํ–ฅ์ƒ
        summary_lines = []
        for idx, item in enumerate(limited_organic, start=1):
            title = item.get("title", "No title")
            link = item.get("link", "#")
            snippet = item.get("snippet", "No description")
            displayed_link = item.get("displayed_link", link)
            
            # ๋งˆํฌ๋‹ค์šด ํ˜•์‹ (๋งํฌ ํด๋ฆญ ๊ฐ€๋Šฅ)
            summary_lines.append(
                f"### Result {idx}: {title}\n\n"
                f"{snippet}\n\n"
                f"**์ถœ์ฒ˜**: [{displayed_link}]({link})\n\n"
                f"---\n"
            )
        
        # ๋ชจ๋ธ์—๊ฒŒ ๋ช…ํ™•ํ•œ ์ง€์นจ ์ถ”๊ฐ€
        instructions = """
# ์›น ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ
์•„๋ž˜๋Š” ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. ์งˆ๋ฌธ์— ๋‹ต๋ณ€ํ•  ๋•Œ ์ด ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์„ธ์š”:
1. ๊ฐ ๊ฒฐ๊ณผ์˜ ์ œ๋ชฉ, ๋‚ด์šฉ, ์ถœ์ฒ˜ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•˜์„ธ์š”
2. ๋‹ต๋ณ€์— ๊ด€๋ จ ์ •๋ณด์˜ ์ถœ์ฒ˜๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ์ธ์šฉํ•˜์„ธ์š” (์˜ˆ: "X ์ถœ์ฒ˜์— ๋”ฐ๋ฅด๋ฉด...")
3. ์‘๋‹ต์— ์‹ค์ œ ์ถœ์ฒ˜ ๋งํฌ๋ฅผ ํฌํ•จํ•˜์„ธ์š”
4. ์—ฌ๋Ÿฌ ์ถœ์ฒ˜์˜ ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ๋‹ต๋ณ€ํ•˜์„ธ์š”
"""
        
        search_results = instructions + "\n".join(summary_lines)
        logger.info(f"๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐœ ์ฒ˜๋ฆฌ ์™„๋ฃŒ")
        return search_results
    
    except Exception as e:
        logger.error(f"Web search failed: {e}")
        return f"Web search failed: {str(e)}"


##############################################################################
# ๋ชจ๋ธ/ํ”„๋กœ์„ธ์„œ ๋กœ๋”ฉ
##############################################################################
MAX_CONTENT_CHARS = 2000
MAX_INPUT_LENGTH = 2096  # ์ตœ๋Œ€ ์ž…๋ ฅ ํ† ํฐ ์ˆ˜ ์ œํ•œ ์ถ”๊ฐ€
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-12B")

processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="eager"  # ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด "flash_attention_2"๋กœ ๋ณ€๊ฒฝ
)
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))


##############################################################################
# CSV, TXT, PDF ๋ถ„์„ ํ•จ์ˆ˜
##############################################################################
def analyze_csv_file(path: str) -> str:
    """
    CSV ํŒŒ์ผ์„ ์ „์ฒด ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜. ๋„ˆ๋ฌด ๊ธธ ๊ฒฝ์šฐ ์ผ๋ถ€๋งŒ ํ‘œ์‹œ.
    """
    try:
        df = pd.read_csv(path)
        if df.shape[0] > 50 or df.shape[1] > 10:
            df = df.iloc[:50, :10]
        df_str = df.to_string()
        if len(df_str) > MAX_CONTENT_CHARS:
            df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
    except Exception as e:
        return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"


def analyze_txt_file(path: str) -> str:
    """
    TXT ํŒŒ์ผ ์ „๋ฌธ ์ฝ๊ธฐ. ๋„ˆ๋ฌด ๊ธธ๋ฉด ์ผ๋ถ€๋งŒ ํ‘œ์‹œ.
    """
    try:
        with open(path, "r", encoding="utf-8") as f:
            text = f.read()
        if len(text) > MAX_CONTENT_CHARS:
            text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
    except Exception as e:
        return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"


def pdf_to_markdown(pdf_path: str) -> str:
    """
    PDF ํ…์ŠคํŠธ๋ฅผ Markdown์œผ๋กœ ๋ณ€ํ™˜. ํŽ˜์ด์ง€๋ณ„๋กœ ๊ฐ„๋‹จํžˆ ํ…์ŠคํŠธ ์ถ”์ถœ.
    """
    text_chunks = []
    try:
        with open(pdf_path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            max_pages = min(5, len(reader.pages))
            for page_num in range(max_pages):
                page = reader.pages[page_num]
                page_text = page.extract_text() or ""
                page_text = page_text.strip()
                if page_text:
                    if len(page_text) > MAX_CONTENT_CHARS // max_pages:
                        page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
                    text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
            if len(reader.pages) > max_pages:
                text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
    except Exception as e:
        return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"

    full_text = "\n".join(text_chunks)
    if len(full_text) > MAX_CONTENT_CHARS:
        full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."

    return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"


##############################################################################
# ์ด๋ฏธ์ง€/๋น„๋””์˜ค ์—…๋กœ๋“œ ์ œํ•œ ๊ฒ€์‚ฌ
##############################################################################
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
            image_count += 1
    return image_count, video_count


def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if isinstance(item["content"], list) and len(item["content"]) > 0:
            file_path = item["content"][0]
            if isinstance(file_path, str):
                if file_path.endswith(".mp4"):
                    video_count += 1
                elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
                    image_count += 1
    return image_count, video_count


def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    media_files = []
    for f in message["files"]:
        if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
            media_files.append(f)

    new_image_count, new_video_count = count_files_in_new_message(media_files)
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count

    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    
    if "<image>" in message["text"]:
        image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
        image_tag_count = message["text"].count("<image>")
        if image_tag_count != len(image_files):
            gr.Warning("The number of <image> tags in the text does not match the number of image files.")
            return False

    return True


##############################################################################
# ๋น„๋””์˜ค ์ฒ˜๋ฆฌ - ์ž„์‹œ ํŒŒ์ผ ์ถ”์  ์ฝ”๋“œ ์ถ”๊ฐ€
##############################################################################
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_interval = max(int(fps), int(total_frames / 10))
    frames = []

    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            # ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์ค„์ด๊ธฐ ์ถ”๊ฐ€
            image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
            if len(frames) >= 5:
                break

    vidcap.release()
    return frames


def process_video(video_path: str) -> tuple[list[dict], list[str]]:
    content = []
    temp_files = []  # ์ž„์‹œ ํŒŒ์ผ ์ถ”์ ์„ ์œ„ํ•œ ๋ฆฌ์ŠคํŠธ
    
    frames = downsample_video(video_path)
    for frame in frames:
        pil_image, timestamp = frame
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            temp_files.append(temp_file.name)  # ์ถ”์ ์„ ์œ„ํ•ด ๊ฒฝ๋กœ ์ €์žฅ
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    
    return content, temp_files


##############################################################################
# interleaved <image> ์ฒ˜๋ฆฌ
##############################################################################
def process_interleaved_images(message: dict) -> list[dict]:
    parts = re.split(r"(<image>)", message["text"])
    content = []
    image_index = 0
    
    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
    
    for part in parts:
        if part == "<image>" and image_index < len(image_files):
            content.append({"type": "image", "url": image_files[image_index]})
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        else:
            if isinstance(part, str) and part != "<image>":
                content.append({"type": "text", "text": part})
    return content


##############################################################################
# PDF + CSV + TXT + ์ด๋ฏธ์ง€/๋น„๋””์˜ค
##############################################################################
def is_image_file(file_path: str) -> bool:
    return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))

def is_video_file(file_path: str) -> bool:
    return file_path.endswith(".mp4")

def is_document_file(file_path: str) -> bool:
    return (
        file_path.lower().endswith(".pdf")
        or file_path.lower().endswith(".csv")
        or file_path.lower().endswith(".txt")
    )


def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
    temp_files = []  # ์ž„์‹œ ํŒŒ์ผ ์ถ”์ ์šฉ ๋ฆฌ์ŠคํŠธ
    
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}], temp_files

    video_files = [f for f in message["files"] if is_video_file(f)]
    image_files = [f for f in message["files"] if is_image_file(f)]
    csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
    txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
    pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]

    content_list = [{"type": "text", "text": message["text"]}]

    for csv_path in csv_files:
        csv_analysis = analyze_csv_file(csv_path)
        content_list.append({"type": "text", "text": csv_analysis})

    for txt_path in txt_files:
        txt_analysis = analyze_txt_file(txt_path)
        content_list.append({"type": "text", "text": txt_analysis})

    for pdf_path in pdf_files:
        pdf_markdown = pdf_to_markdown(pdf_path)
        content_list.append({"type": "text", "text": pdf_markdown})

    if video_files:
        video_content, video_temp_files = process_video(video_files[0])
        content_list += video_content
        temp_files.extend(video_temp_files)
        return content_list, temp_files

    if "<image>" in message["text"] and image_files:
        interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
        if content_list and content_list[0]["type"] == "text":
            content_list = content_list[1:]
        return interleaved_content + content_list, temp_files
    else:
        for img_path in image_files:
            content_list.append({"type": "image", "url": img_path})

    return content_list, temp_files


##############################################################################
# history -> LLM ๋ฉ”์‹œ์ง€ ๋ณ€ํ™˜
##############################################################################
def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            elif isinstance(content, list) and len(content) > 0:
                file_path = content[0]
                if is_image_file(file_path):
                    current_user_content.append({"type": "image", "url": file_path})
                else:
                    current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})

    if current_user_content:
        messages.append({"role": "user", "content": current_user_content})
        
    return messages


##############################################################################
# ๋ชจ๋ธ ์ƒ์„ฑ ํ•จ์ˆ˜์—์„œ OOM ์บ์น˜
##############################################################################
def _model_gen_with_oom_catch(**kwargs):
    """
    ๋ณ„๋„ ์Šค๋ ˆ๋“œ์—์„œ OutOfMemoryError๋ฅผ ์žก์•„์ฃผ๊ธฐ ์œ„ํ•ด
    """
    try:
        model.generate(**kwargs)
    except torch.cuda.OutOfMemoryError:
        raise RuntimeError(
            "[OutOfMemoryError] GPU ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค. "
            "Max New Tokens์„ ์ค„์ด๊ฑฐ๋‚˜, ํ”„๋กฌํ”„ํŠธ ๊ธธ์ด๋ฅผ ์ค„์—ฌ์ฃผ์„ธ์š”."
        )
    finally:
        # ์ƒ์„ฑ ์™„๋ฃŒ ํ›„ ํ•œ๋ฒˆ ๋” ์บ์‹œ ๋น„์šฐ๊ธฐ
        clear_cuda_cache()


##############################################################################
# ๋ฉ”์ธ ์ถ”๋ก  ํ•จ์ˆ˜ (web search ์ฒดํฌ ์‹œ ์ž๋™ ํ‚ค์›Œ๋“œ์ถ”์ถœ->๊ฒ€์ƒ‰->๊ฒฐ๊ณผ system msg)
##############################################################################
@spaces.GPU(duration=120)
def run(
    message: dict,
    history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 512,
    use_web_search: bool = False,
    web_search_query: str = "",
) -> Iterator[str]:

    if not validate_media_constraints(message, history):
        yield ""
        return

    temp_files = []  # ์ž„์‹œ ํŒŒ์ผ ์ถ”์ ์šฉ
    
    try:
        combined_system_msg = ""

        # ๋‚ด๋ถ€์ ์œผ๋กœ๋งŒ ์‚ฌ์šฉ (UI์—์„œ๋Š” ๋ณด์ด์ง€ ์•Š์Œ)
        if system_prompt.strip():
            combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"

        if use_web_search:
            user_text = message["text"]
            ws_query = extract_keywords(user_text, top_k=5)
            if ws_query.strip():
                logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
                ws_result = do_web_search(ws_query)
                combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n"
                # >>> ์ถ”๊ฐ€๋œ ์•ˆ๋‚ด ๋ฌธ๊ตฌ (๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์˜ link ๋“ฑ ์ถœ์ฒ˜๋ฅผ ํ™œ์šฉ)
                combined_system_msg += "[์ฐธ๊ณ : ์œ„ ๊ฒ€์ƒ‰๊ฒฐ๊ณผ ๋‚ด์šฉ๊ณผ link๋ฅผ ์ถœ์ฒ˜๋กœ ์ธ์šฉํ•˜์—ฌ ๋‹ต๋ณ€ํ•ด ์ฃผ์„ธ์š”.]\n\n"
                combined_system_msg += """
[์ค‘์š” ์ง€์‹œ์‚ฌํ•ญ]
1. ๋‹ต๋ณ€์— ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ์—์„œ ์ฐพ์€ ์ •๋ณด์˜ ์ถœ์ฒ˜๋ฅผ ๋ฐ˜๋“œ์‹œ ์ธ์šฉํ•˜์„ธ์š”.
2. ์ถœ์ฒ˜ ์ธ์šฉ ์‹œ "[์ถœ์ฒ˜ ์ œ๋ชฉ](๋งํฌ)" ํ˜•์‹์˜ ๋งˆํฌ๋‹ค์šด ๋งํฌ๋ฅผ ์‚ฌ์šฉํ•˜์„ธ์š”.
3. ์—ฌ๋Ÿฌ ์ถœ์ฒ˜์˜ ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ๋‹ต๋ณ€ํ•˜์„ธ์š”.
4. ๋‹ต๋ณ€ ๋งˆ์ง€๋ง‰์— "์ฐธ๊ณ  ์ž๋ฃŒ:" ์„น์…˜์„ ์ถ”๊ฐ€ํ•˜๊ณ  ์‚ฌ์šฉํ•œ ์ฃผ์š” ์ถœ์ฒ˜ ๋งํฌ๋ฅผ ๋‚˜์—ดํ•˜์„ธ์š”.
"""
            else:
                combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"

        messages = []
        if combined_system_msg.strip():
            messages.append({
                "role": "system",
                "content": [{"type": "text", "text": combined_system_msg.strip()}],
            })

        messages.extend(process_history(history))

        user_content, user_temp_files = process_new_user_message(message)
        temp_files.extend(user_temp_files)  # ์ž„์‹œ ํŒŒ์ผ ์ถ”์ 
        
        for item in user_content:
            if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
                item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        messages.append({"role": "user", "content": user_content})

        inputs = processor.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
        ).to(device=model.device, dtype=torch.bfloat16)
        
        # ์ž…๋ ฅ ํ† ํฐ ์ˆ˜ ์ œํ•œ ์ถ”๊ฐ€
        if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
            inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
            if 'attention_mask' in inputs:
                inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
        
        streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
        )

        t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
        t.start()

        output = ""
        for new_text in streamer:
            output += new_text
            yield output

    except Exception as e:
        logger.error(f"Error in run: {str(e)}")
        yield f"์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"
    
    finally:
        # ์ž„์‹œ ํŒŒ์ผ ์‚ญ์ œ
        for temp_file in temp_files:
            try:
                if os.path.exists(temp_file):
                    os.unlink(temp_file)
                    logger.info(f"Deleted temp file: {temp_file}")
            except Exception as e:
                logger.warning(f"Failed to delete temp file {temp_file}: {e}")
        
        # ๋ช…์‹œ์  ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        try:
            del inputs, streamer
        except:
            pass
        
        clear_cuda_cache()



##############################################################################
# ์˜ˆ์‹œ๋“ค (๋ชจ๋‘ ์˜์–ด๋กœ)
##############################################################################
examples = [
    [
        {
            "text": "Compare the contents of the two PDF files.",
            "files": [
                "assets/additional-examples/before.pdf",
                "assets/additional-examples/after.pdf",
            ],
        }
    ],
    [
        {
            "text": "Summarize and analyze the contents of the CSV file.",
            "files": ["assets/additional-examples/sample-csv.csv"],
        }
    ],
    [
        {
            "text": "Assume the role of a friendly and understanding girlfriend. Describe this video.",
            "files": ["assets/additional-examples/tmp.mp4"],
        }
    ],
    [
        {
            "text": "Describe the cover and read the text on it.",
            "files": ["assets/additional-examples/maz.jpg"],
        }
    ],
    [
        {
            "text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?",
            "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
        }
    ],
    [
        {
            "text": "Solve this integral.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
    [
        {
            "text": "When was this ticket issued, and what is its price?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "Based on the sequence of these images, create a short story.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "Write Python code using matplotlib to plot a bar chart that matches this image.",
            "files": ["assets/additional-examples/barchart.png"],
        }
    ],
    [
        {
            "text": "Read the text in the image and write it out in Markdown format.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "What does this sign say?",
            "files": ["assets/sample-images/02.png"],
        }
    ],
    [
        {
            "text": "Compare the two images and describe their similarities and differences.",
            "files": ["assets/sample-images/03.png"],
        }
    ], 
]

##############################################################################
# Gradio UI (Blocks) ๊ตฌ์„ฑ (์ขŒ์ธก ์‚ฌ์ด๋“œ ๋ฉ”๋‰ด ์—†์ด ์ „์ฒดํ™”๋ฉด ์ฑ„ํŒ…)
##############################################################################
css = """
/* 1) UI๋ฅผ ์ฒ˜์Œ๋ถ€ํ„ฐ ๊ฐ€์žฅ ๋„“๊ฒŒ (width 100%) ๊ณ ์ •ํ•˜์—ฌ ํ‘œ์‹œ */
.gradio-container {
    background: rgba(255, 255, 255, 0.7); /* ๋ฐฐ๊ฒฝ ํˆฌ๋ช…๋„ ์ฆ๊ฐ€ */
    padding: 30px 40px;
    margin: 20px auto;  /* ์œ„์•„๋ž˜ ์—ฌ๋ฐฑ๋งŒ ์œ ์ง€ */
    width: 100% !important;
    max-width: none !important; /* 1200px ์ œํ•œ ์ œ๊ฑฐ */
}
.fillable {
    width: 100% !important; 
    max-width: 100% !important; 
}
/* 2) ๋ฐฐ๊ฒฝ์„ ์™„์ „ํžˆ ํˆฌ๋ช…ํ•˜๊ฒŒ ๋ณ€๊ฒฝ */
body {
    background: transparent; /* ์™„์ „ ํˆฌ๋ช… ๋ฐฐ๊ฒฝ */
    margin: 0;
    padding: 0;
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    color: #333;
}
/* ๋ฒ„ํŠผ ์ƒ‰์ƒ ์™„์ „ํžˆ ์ œ๊ฑฐํ•˜๊ณ  ํˆฌ๋ช…ํ•˜๊ฒŒ */
button, .btn {
    background: transparent !important; /* ์ƒ‰์ƒ ์™„์ „ํžˆ ์ œ๊ฑฐ */
    border: 1px solid #ddd; /* ๊ฒฝ๊ณ„์„ ๋งŒ ์‚ด์ง ์ถ”๊ฐ€ */
    color: #333;
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    cursor: pointer;
}
button:hover, .btn:hover {
    background: rgba(0, 0, 0, 0.05) !important; /* ํ˜ธ๋ฒ„ ์‹œ ์•„์ฃผ ์‚ด์ง ์–ด๋‘ก๊ฒŒ๋งŒ */
}

/* examples ๊ด€๋ จ ๋ชจ๋“  ์ƒ‰์ƒ ์ œ๊ฑฐ */
#examples_container, .examples-container {
    margin: auto;
    width: 90%;
    background: transparent !important;
}
#examples_row, .examples-row {
    justify-content: center;
    background: transparent !important;
}

/* examples ๋ฒ„ํŠผ ๋‚ด๋ถ€์˜ ๋ชจ๋“  ์ƒ‰์ƒ ์ œ๊ฑฐ */
.gr-samples-table button,
.gr-samples-table .gr-button,
.gr-samples-table .gr-sample-btn,
.gr-examples button,
.gr-examples .gr-button,
.gr-examples .gr-sample-btn,
.examples button,
.examples .gr-button,
.examples .gr-sample-btn {
    background: transparent !important;
    border: 1px solid #ddd;
    color: #333;
}

/* examples ๋ฒ„ํŠผ ํ˜ธ๋ฒ„ ์‹œ์—๋„ ์ƒ‰์ƒ ์—†๊ฒŒ */
.gr-samples-table button:hover,
.gr-samples-table .gr-button:hover,
.gr-samples-table .gr-sample-btn:hover,
.gr-examples button:hover,
.gr-examples .gr-button:hover,
.gr-examples .gr-sample-btn:hover,
.examples button:hover,
.examples .gr-button:hover,
.examples .gr-sample-btn:hover {
    background: rgba(0, 0, 0, 0.05) !important;
}

/* ์ฑ„ํŒ… ์ธํ„ฐํŽ˜์ด์Šค ์š”์†Œ๋“ค๋„ ํˆฌ๋ช…ํ•˜๊ฒŒ */
.chatbox, .chatbot, .message {
    background: transparent !important;
}

/* ์ž…๋ ฅ์ฐฝ ํˆฌ๋ช…๋„ ์กฐ์ • */
.multimodal-textbox, textarea, input {
    background: rgba(255, 255, 255, 0.5) !important;
}

/* ๋ชจ๋“  ์ปจํ…Œ์ด๋„ˆ ์š”์†Œ์— ๋ฐฐ๊ฒฝ์ƒ‰ ์ œ๊ฑฐ */
.container, .wrap, .box, .panel, .gr-panel {
    background: transparent !important;
}

/* ์˜ˆ์ œ ์„น์…˜์˜ ๋ชจ๋“  ์š”์†Œ์—์„œ ๋ฐฐ๊ฒฝ์ƒ‰ ์ œ๊ฑฐ */
.gr-examples-container, .gr-examples, .gr-sample, .gr-sample-row, .gr-sample-cell {
    background: transparent !important;
}
"""

title_html = """
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐Ÿค— Gemma3-R1984-27B </h1>
<p align="center" style="font-size:1.1em; color:#555;">
    โœ…Agentic AI Platform โœ…Reasoning & Uncensored โœ…Multimodal & VLM โœ…Deep-Research & RAG <br>
    Operates on an โœ…'NVIDIA A100 GPU' as an independent local server, enhancing security and preventing information leakage.<br>
    @Model Rpository: VIDraft/Gemma-3-R1984-27B, @Based by 'Google Gemma-3-27b', @Powered by 'MOUSE-II'(VIDRAFT)
</p>
"""


with gr.Blocks(css=css, title="Gemma3-R1984-27B") as demo:
    gr.Markdown(title_html)

    # Display the web search option (while the system prompt and token slider remain hidden)
    web_search_checkbox = gr.Checkbox(
        label="Deep Research",
        value=False
    )

    # Used internally but not visible to the user
    system_prompt_box = gr.Textbox(
        lines=3,
        value="You are a deep thinking AI that may use extremely long chains of thought to thoroughly analyze the problem and deliberate using systematic reasoning processes to arrive at a correct solution before answering.",
        visible=False  # hidden from view
    )
    
    max_tokens_slider = gr.Slider(
        label="Max New Tokens",
        minimum=100,
        maximum=8000,
        step=50,
        value=1000,
        visible=False  # hidden from view
    )
    
    web_search_text = gr.Textbox(
        lines=1,
        label="(Unused) Web Search Query",
        placeholder="No direct input needed",
        visible=False  # hidden from view
    )
    
    # Configure the chat interface
    chat = gr.ChatInterface(
        fn=run,
        type="messages",
        chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
        textbox=gr.MultimodalTextbox(
            file_types=[
                ".webp", ".png", ".jpg", ".jpeg", ".gif",
                ".mp4", ".csv", ".txt", ".pdf"
            ],
            file_count="multiple",
            autofocus=True
        ),
        multimodal=True,
        additional_inputs=[
            system_prompt_box,
            max_tokens_slider,
            web_search_checkbox,
            web_search_text,
        ],
        stop_btn=False,
        title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
        examples=examples,
        run_examples_on_click=False,
        cache_examples=False,
        css_paths=None,
        delete_cache=(1800, 1800),
    )

    # Example section - since examples are already set in ChatInterface, this is for display only
    with gr.Row(elem_id="examples_row"):
        with gr.Column(scale=12, elem_id="examples_container"):
            gr.Markdown("### Example Inputs (click to load)")


if __name__ == "__main__":
    # Run locally
    demo.launch()