|
|
|
|
|
import os |
|
import re |
|
import tempfile |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
|
|
import cv2 |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from loguru import logger |
|
from PIL import Image |
|
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer |
|
|
|
|
|
import pandas as pd |
|
|
|
|
|
import PyPDF2 |
|
|
|
MAX_CONTENT_CHARS = 8000 |
|
|
|
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it") |
|
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") |
|
model = Gemma3ForConditionalGeneration.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="eager" |
|
) |
|
|
|
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) |
|
|
|
|
|
|
|
|
|
|
|
def analyze_csv_file(path: str) -> str: |
|
""" |
|
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์. |
|
""" |
|
try: |
|
df = pd.read_csv(path) |
|
df_str = df.to_string() |
|
if len(df_str) > MAX_CONTENT_CHARS: |
|
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" |
|
except Exception as e: |
|
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" |
|
|
|
|
|
def analyze_txt_file(path: str) -> str: |
|
""" |
|
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์. |
|
""" |
|
try: |
|
with open(path, "r", encoding="utf-8") as f: |
|
text = f.read() |
|
if len(text) > MAX_CONTENT_CHARS: |
|
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" |
|
except Exception as e: |
|
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" |
|
|
|
|
|
def pdf_to_markdown(pdf_path: str) -> str: |
|
""" |
|
PDF โ Markdown. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ. |
|
""" |
|
text_chunks = [] |
|
try: |
|
with open(pdf_path, "rb") as f: |
|
reader = PyPDF2.PdfReader(f) |
|
for page_num, page in enumerate(reader.pages, start=1): |
|
page_text = page.extract_text() or "" |
|
page_text = page_text.strip() |
|
if page_text: |
|
text_chunks.append(f"## Page {page_num}\n\n{page_text}\n") |
|
except Exception as e: |
|
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" |
|
|
|
full_text = "\n".join(text_chunks) |
|
if len(full_text) > MAX_CONTENT_CHARS: |
|
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
|
|
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" |
|
|
|
|
|
|
|
|
|
|
|
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for path in paths: |
|
if path.endswith(".mp4"): |
|
video_count += 1 |
|
else: |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
|
|
def count_files_in_history(history: list[dict]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for item in history: |
|
if item["role"] != "user" or isinstance(item["content"], str): |
|
continue |
|
if item["content"][0].endswith(".mp4"): |
|
video_count += 1 |
|
else: |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
|
|
def validate_media_constraints(message: dict, history: list[dict]) -> bool: |
|
""" |
|
- ๋น๋์ค 1๊ฐ ์ด๊ณผ ๋ถ๊ฐ |
|
- ๋น๋์ค์ ์ด๋ฏธ์ง ํผํฉ ๋ถ๊ฐ |
|
- ์ด๋ฏธ์ง ๊ฐ์ MAX_NUM_IMAGES ์ด๊ณผ ๋ถ๊ฐ |
|
- <image> ํ๊ทธ๊ฐ ์์ผ๋ฉด ํ๊ทธ ์์ ์ค์ ์ด๋ฏธ์ง ์ ์ผ์น |
|
- CSV, TXT, PDF ๋ฑ์ ์ฌ๊ธฐ์ ์ ํํ์ง ์์ |
|
""" |
|
media_files = [] |
|
for f in message["files"]: |
|
|
|
|
|
|
|
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): |
|
media_files.append(f) |
|
|
|
new_image_count, new_video_count = count_files_in_new_message(media_files) |
|
history_image_count, history_video_count = count_files_in_history(history) |
|
image_count = history_image_count + new_image_count |
|
video_count = history_video_count + new_video_count |
|
|
|
if video_count > 1: |
|
gr.Warning("Only one video is supported.") |
|
return False |
|
if video_count == 1: |
|
if image_count > 0: |
|
gr.Warning("Mixing images and videos is not allowed.") |
|
return False |
|
if "<image>" in message["text"]: |
|
gr.Warning("Using <image> tags with video files is not supported.") |
|
return False |
|
if video_count == 0 and image_count > MAX_NUM_IMAGES: |
|
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") |
|
return False |
|
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count: |
|
gr.Warning("The number of <image> tags in the text does not match the number of images.") |
|
return False |
|
|
|
return True |
|
|
|
|
|
|
|
|
|
|
|
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: |
|
vidcap = cv2.VideoCapture(video_path) |
|
fps = vidcap.get(cv2.CAP_PROP_FPS) |
|
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
frame_interval = int(fps / 3) |
|
frames = [] |
|
|
|
for i in range(0, total_frames, frame_interval): |
|
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) |
|
success, image = vidcap.read() |
|
if success: |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
pil_image = Image.fromarray(image) |
|
timestamp = round(i / fps, 2) |
|
frames.append((pil_image, timestamp)) |
|
|
|
vidcap.release() |
|
return frames |
|
|
|
|
|
def process_video(video_path: str) -> list[dict]: |
|
content = [] |
|
frames = downsample_video(video_path) |
|
for frame in frames: |
|
pil_image, timestamp = frame |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: |
|
pil_image.save(temp_file.name) |
|
content.append({"type": "text", "text": f"Frame {timestamp}:"}) |
|
content.append({"type": "image", "url": temp_file.name}) |
|
logger.debug(f"{content=}") |
|
return content |
|
|
|
|
|
|
|
|
|
|
|
def process_interleaved_images(message: dict) -> list[dict]: |
|
parts = re.split(r"(<image>)", message["text"]) |
|
content = [] |
|
image_index = 0 |
|
for part in parts: |
|
if part == "<image>": |
|
content.append({"type": "image", "url": message["files"][image_index]}) |
|
image_index += 1 |
|
elif part.strip(): |
|
content.append({"type": "text", "text": part.strip()}) |
|
else: |
|
|
|
if isinstance(part, str) and part != "<image>": |
|
content.append({"type": "text", "text": part}) |
|
return content |
|
|
|
|
|
|
|
|
|
|
|
def process_new_user_message(message: dict) -> list[dict]: |
|
if not message["files"]: |
|
return [{"type": "text", "text": message["text"]}] |
|
|
|
|
|
video_files = [f for f in message["files"] if f.endswith(".mp4")] |
|
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] |
|
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] |
|
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] |
|
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] |
|
|
|
|
|
content_list = [{"type": "text", "text": message["text"]}] |
|
|
|
|
|
for csv_path in csv_files: |
|
csv_analysis = analyze_csv_file(csv_path) |
|
content_list.append({"type": "text", "text": csv_analysis}) |
|
|
|
|
|
for txt_path in txt_files: |
|
txt_analysis = analyze_txt_file(txt_path) |
|
content_list.append({"type": "text", "text": txt_analysis}) |
|
|
|
|
|
for pdf_path in pdf_files: |
|
pdf_markdown = pdf_to_markdown(pdf_path) |
|
content_list.append({"type": "text", "text": pdf_markdown}) |
|
|
|
|
|
if video_files: |
|
content_list += process_video(video_files[0]) |
|
return content_list |
|
|
|
|
|
if "<image>" in message["text"]: |
|
|
|
return process_interleaved_images(message) |
|
else: |
|
|
|
for img_path in image_files: |
|
content_list.append({"type": "image", "url": img_path}) |
|
|
|
return content_list |
|
|
|
|
|
|
|
|
|
|
|
def process_history(history: list[dict]) -> list[dict]: |
|
messages = [] |
|
current_user_content: list[dict] = [] |
|
for item in history: |
|
if item["role"] == "assistant": |
|
|
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
current_user_content = [] |
|
|
|
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) |
|
else: |
|
|
|
content = item["content"] |
|
if isinstance(content, str): |
|
current_user_content.append({"type": "text", "text": content}) |
|
else: |
|
|
|
current_user_content.append({"type": "image", "url": content[0]}) |
|
return messages |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: |
|
if not validate_media_constraints(message, history): |
|
yield "" |
|
return |
|
|
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) |
|
messages.extend(process_history(history)) |
|
messages.append({"role": "user", "content": process_new_user_message(message)}) |
|
|
|
inputs = processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt", |
|
).to(device=model.device, dtype=torch.bfloat16) |
|
|
|
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) |
|
gen_kwargs = dict( |
|
inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
t = Thread(target=model.generate, kwargs=gen_kwargs) |
|
t.start() |
|
|
|
output = "" |
|
for new_text in streamer: |
|
output += new_text |
|
yield output |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples = [ |
|
|
|
[ |
|
{ |
|
"text": "PDF ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ.", |
|
"files": ["assets/additional-examples/pdf.pdf"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ", |
|
"files": ["assets/additional-examples/sample-csv.csv"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/barchart.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์์์์ ์ด์ํ ์ ์ด ๋ฌด์์ธ๊ฐ์?", |
|
"files": ["assets/additional-examples/tmp.mp4"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ ๋ ์ฃผ์ํด์ผ ํ ์ ์ด ์์๊น์?", |
|
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง์ ์๊ฐ์ ์์์์ ์๊ฐ์ ๋ฐ์ ์๋ฅผ ์์ฑํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง์ ์๊ฐ์ ์์๋ฅผ ํ ๋๋ก ์งง์ ์
๊ณก์ ์๊ณกํด์ฃผ์ธ์.", |
|
"files": [ |
|
"assets/sample-images/07-1.png", |
|
"assets/sample-images/07-2.png", |
|
"assets/sample-images/07-3.png", |
|
"assets/sample-images/07-4.png", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์ง์์ ๋ฌด์จ ์ผ์ด ์์์์ง ์งง์ ์ด์ผ๊ธฐ๋ฅผ ์ง์ด๋ณด์ธ์.", |
|
"files": ["assets/sample-images/08.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.", |
|
"files": [ |
|
"assets/sample-images/09-1.png", |
|
"assets/sample-images/09-2.png", |
|
"assets/sample-images/09-3.png", |
|
"assets/sample-images/09-4.png", |
|
"assets/sample-images/09-5.png", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์ธ๊ณ์์ ์ด๊ณ ์์ ์๋ฌผ๋ค์ ์์ํด์ ๋ฌ์ฌํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/10.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง์ ์ ํ ํ
์คํธ๋ฅผ ์ฝ์ด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/1.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ํฐ์ผ์ ์ธ์ ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?", |
|
"files": ["assets/additional-examples/2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง์ ์๋ ํ
์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/3.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์ ๋ถ์ ํ์ด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/4.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์ด๋ฏธ์ง๋ฅผ ๊ฐ๋จํ ์บก์
์ผ๋ก ์ค๋ช
ํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/01.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?", |
|
"files": ["assets/sample-images/02.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "๋ ์ด๋ฏธ์ง๋ฅผ ๋น๊ตํด์ ๊ณตํต์ ๊ณผ ์ฐจ์ด์ ์ ๋งํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/03.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง์ ๋ณด์ด๋ ๋ชจ๋ ์ฌ๋ฌผ๊ณผ ๊ทธ ์์์ ๋์ดํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/04.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ฅ๋ฉด์ ๋ถ์๊ธฐ๋ฅผ ๋ฌ์ฌํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/05.png"], |
|
} |
|
], |
|
] |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=run, |
|
type="messages", |
|
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), |
|
|
|
textbox=gr.MultimodalTextbox( |
|
file_types=[ |
|
".webp", ".png", ".jpg", ".jpeg", ".gif", |
|
".mp4", ".csv", ".txt", ".pdf" |
|
], |
|
file_count="multiple", |
|
autofocus=True |
|
), |
|
multimodal=True, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
label="System Prompt", |
|
value=( |
|
"You are a deeply thoughtful AI. Consider problems thoroughly and derive " |
|
"correct solutions through systematic reasoning. Please answer in korean." |
|
) |
|
), |
|
gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000), |
|
], |
|
stop_btn=False, |
|
title="Vidraft-Gemma-3-27B", |
|
examples=examples, |
|
run_examples_on_click=False, |
|
cache_examples=False, |
|
css_paths="style.css", |
|
delete_cache=(1800, 1800), |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|