|
|
|
|
|
import os |
|
import re |
|
import tempfile |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
import json |
|
import requests |
|
import cv2 |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from loguru import logger |
|
from PIL import Image |
|
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer |
|
|
|
|
|
import pandas as pd |
|
|
|
import PyPDF2 |
|
|
|
|
|
|
|
|
|
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") |
|
|
|
|
|
|
|
|
|
def extract_keywords(text: str, top_k: int = 5) -> str: |
|
""" |
|
1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น |
|
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ |
|
3) ์ต๋ top_k๊ฐ๋ง |
|
""" |
|
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text) |
|
tokens = text.split() |
|
key_tokens = tokens[:top_k] |
|
return " ".join(key_tokens) |
|
|
|
|
|
|
|
|
|
|
|
def do_web_search(query: str) -> str: |
|
""" |
|
์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ |
|
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ |
|
""" |
|
try: |
|
url = "https://api.serphouse.com/serp/live" |
|
params = { |
|
"q": query, |
|
"domain": "google.com", |
|
"lang": "en", |
|
"device": "desktop", |
|
"serp_type": "web", |
|
"num_result": "20", |
|
"api_token": SERPHOUSE_API_KEY, |
|
} |
|
resp = requests.get(url, params=params, timeout=30) |
|
resp.raise_for_status() |
|
data = resp.json() |
|
|
|
results = data.get("results", {}) |
|
organic = results.get("results", {}).get("organic", []) |
|
if not organic: |
|
return "No web search results found." |
|
|
|
summary_lines = [] |
|
for idx, item in enumerate(organic[:20], start=1): |
|
item_json = json.dumps(item, ensure_ascii=False, indent=2) |
|
summary_lines.append(f"Result {idx}:\n{item_json}\n") |
|
|
|
return "\n".join(summary_lines) |
|
except Exception as e: |
|
logger.error(f"Web search failed: {e}") |
|
return f"Web search failed: {str(e)}" |
|
|
|
|
|
|
|
|
|
|
|
MAX_CONTENT_CHARS = 4000 |
|
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it") |
|
|
|
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") |
|
model = Gemma3ForConditionalGeneration.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="eager" |
|
) |
|
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) |
|
|
|
|
|
|
|
|
|
|
|
def analyze_csv_file(path: str) -> str: |
|
""" |
|
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์. |
|
""" |
|
try: |
|
df = pd.read_csv(path) |
|
if df.shape[0] > 50 or df.shape[1] > 10: |
|
df = df.iloc[:50, :10] |
|
df_str = df.to_string() |
|
if len(df_str) > MAX_CONTENT_CHARS: |
|
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" |
|
except Exception as e: |
|
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" |
|
|
|
|
|
def analyze_txt_file(path: str) -> str: |
|
""" |
|
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์. |
|
""" |
|
try: |
|
with open(path, "r", encoding="utf-8") as f: |
|
text = f.read() |
|
if len(text) > MAX_CONTENT_CHARS: |
|
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" |
|
except Exception as e: |
|
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" |
|
|
|
|
|
def pdf_to_markdown(pdf_path: str) -> str: |
|
""" |
|
PDF โ Markdown. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ. |
|
""" |
|
text_chunks = [] |
|
try: |
|
with open(pdf_path, "rb") as f: |
|
reader = PyPDF2.PdfReader(f) |
|
max_pages = min(5, len(reader.pages)) |
|
for page_num in range(max_pages): |
|
page = reader.pages[page_num] |
|
page_text = page.extract_text() or "" |
|
page_text = page_text.strip() |
|
if page_text: |
|
|
|
if len(page_text) > MAX_CONTENT_CHARS // max_pages: |
|
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" |
|
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") |
|
if len(reader.pages) > max_pages: |
|
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") |
|
except Exception as e: |
|
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" |
|
|
|
full_text = "\n".join(text_chunks) |
|
if len(full_text) > MAX_CONTENT_CHARS: |
|
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
|
|
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" |
|
|
|
|
|
|
|
|
|
|
|
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for path in paths: |
|
if path.endswith(".mp4"): |
|
video_count += 1 |
|
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
|
|
def count_files_in_history(history: list[dict]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for item in history: |
|
if item["role"] != "user" or isinstance(item["content"], str): |
|
continue |
|
if isinstance(item["content"], list) and len(item["content"]) > 0: |
|
file_path = item["content"][0] |
|
if isinstance(file_path, str): |
|
if file_path.endswith(".mp4"): |
|
video_count += 1 |
|
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
|
|
def validate_media_constraints(message: dict, history: list[dict]) -> bool: |
|
media_files = [] |
|
for f in message["files"]: |
|
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): |
|
media_files.append(f) |
|
|
|
new_image_count, new_video_count = count_files_in_new_message(media_files) |
|
history_image_count, history_video_count = count_files_in_history(history) |
|
image_count = history_image_count + new_image_count |
|
video_count = history_video_count + new_video_count |
|
|
|
if video_count > 1: |
|
gr.Warning("Only one video is supported.") |
|
return False |
|
if video_count == 1: |
|
if image_count > 0: |
|
gr.Warning("Mixing images and videos is not allowed.") |
|
return False |
|
if "<image>" in message["text"]: |
|
gr.Warning("Using <image> tags with video files is not supported.") |
|
return False |
|
if video_count == 0 and image_count > MAX_NUM_IMAGES: |
|
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") |
|
return False |
|
|
|
if "<image>" in message["text"]: |
|
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] |
|
image_tag_count = message["text"].count("<image>") |
|
if image_tag_count != len(image_files): |
|
gr.Warning("The number of <image> tags in the text does not match the number of image files.") |
|
return False |
|
|
|
return True |
|
|
|
|
|
|
|
|
|
|
|
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: |
|
vidcap = cv2.VideoCapture(video_path) |
|
fps = vidcap.get(cv2.CAP_PROP_FPS) |
|
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
frame_interval = max(int(fps), int(total_frames / 10)) |
|
frames = [] |
|
|
|
for i in range(0, total_frames, frame_interval): |
|
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) |
|
success, image = vidcap.read() |
|
if success: |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
pil_image = Image.fromarray(image) |
|
timestamp = round(i / fps, 2) |
|
frames.append((pil_image, timestamp)) |
|
if len(frames) >= 5: |
|
break |
|
|
|
vidcap.release() |
|
return frames |
|
|
|
|
|
def process_video(video_path: str) -> list[dict]: |
|
content = [] |
|
frames = downsample_video(video_path) |
|
for frame in frames: |
|
pil_image, timestamp = frame |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: |
|
pil_image.save(temp_file.name) |
|
content.append({"type": "text", "text": f"Frame {timestamp}:"}) |
|
content.append({"type": "image", "url": temp_file.name}) |
|
logger.debug(f"{content=}") |
|
return content |
|
|
|
|
|
|
|
|
|
|
|
def process_interleaved_images(message: dict) -> list[dict]: |
|
parts = re.split(r"(<image>)", message["text"]) |
|
content = [] |
|
image_index = 0 |
|
|
|
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] |
|
|
|
for part in parts: |
|
if part == "<image>" and image_index < len(image_files): |
|
content.append({"type": "image", "url": image_files[image_index]}) |
|
image_index += 1 |
|
elif part.strip(): |
|
content.append({"type": "text", "text": part.strip()}) |
|
else: |
|
|
|
if isinstance(part, str) and part != "<image>": |
|
content.append({"type": "text", "text": part}) |
|
return content |
|
|
|
|
|
|
|
|
|
|
|
def is_image_file(file_path: str) -> bool: |
|
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) |
|
|
|
def is_video_file(file_path: str) -> bool: |
|
return file_path.endswith(".mp4") |
|
|
|
def is_document_file(file_path: str) -> bool: |
|
return ( |
|
file_path.lower().endswith(".pdf") |
|
or file_path.lower().endswith(".csv") |
|
or file_path.lower().endswith(".txt") |
|
) |
|
|
|
|
|
def process_new_user_message(message: dict) -> list[dict]: |
|
if not message["files"]: |
|
return [{"type": "text", "text": message["text"]}] |
|
|
|
video_files = [f for f in message["files"] if is_video_file(f)] |
|
image_files = [f for f in message["files"] if is_image_file(f)] |
|
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] |
|
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] |
|
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] |
|
|
|
content_list = [{"type": "text", "text": message["text"]}] |
|
|
|
for csv_path in csv_files: |
|
csv_analysis = analyze_csv_file(csv_path) |
|
content_list.append({"type": "text", "text": csv_analysis}) |
|
|
|
for txt_path in txt_files: |
|
txt_analysis = analyze_txt_file(txt_path) |
|
content_list.append({"type": "text", "text": txt_analysis}) |
|
|
|
for pdf_path in pdf_files: |
|
pdf_markdown = pdf_to_markdown(pdf_path) |
|
content_list.append({"type": "text", "text": pdf_markdown}) |
|
|
|
if video_files: |
|
content_list += process_video(video_files[0]) |
|
return content_list |
|
|
|
if "<image>" in message["text"] and image_files: |
|
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) |
|
|
|
if content_list and content_list[0]["type"] == "text": |
|
content_list = content_list[1:] |
|
return interleaved_content + content_list |
|
else: |
|
for img_path in image_files: |
|
content_list.append({"type": "image", "url": img_path}) |
|
|
|
return content_list |
|
|
|
|
|
|
|
|
|
|
|
def process_history(history: list[dict]) -> list[dict]: |
|
messages = [] |
|
current_user_content: list[dict] = [] |
|
for item in history: |
|
if item["role"] == "assistant": |
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
current_user_content = [] |
|
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) |
|
else: |
|
content = item["content"] |
|
if isinstance(content, str): |
|
current_user_content.append({"type": "text", "text": content}) |
|
elif isinstance(content, list) and len(content) > 0: |
|
file_path = content[0] |
|
if is_image_file(file_path): |
|
current_user_content.append({"type": "image", "url": file_path}) |
|
else: |
|
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) |
|
|
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
|
|
return messages |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def run( |
|
message: dict, |
|
history: list[dict], |
|
system_prompt: str = "", |
|
max_new_tokens: int = 512, |
|
use_web_search: bool = False, |
|
web_search_query: str = "", |
|
) -> Iterator[str]: |
|
|
|
if not validate_media_constraints(message, history): |
|
yield "" |
|
return |
|
|
|
try: |
|
combined_system_msg = "" |
|
|
|
|
|
if system_prompt.strip(): |
|
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n" |
|
|
|
if use_web_search: |
|
user_text = message["text"] |
|
ws_query = extract_keywords(user_text, top_k=5) |
|
if ws_query.strip(): |
|
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") |
|
ws_result = do_web_search(ws_query) |
|
combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n" |
|
else: |
|
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n" |
|
|
|
messages = [] |
|
if combined_system_msg.strip(): |
|
messages.append({ |
|
"role": "system", |
|
"content": [{"type": "text", "text": combined_system_msg.strip()}], |
|
}) |
|
|
|
messages.extend(process_history(history)) |
|
|
|
user_content = process_new_user_message(message) |
|
for item in user_content: |
|
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: |
|
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
messages.append({"role": "user", "content": user_content}) |
|
|
|
inputs = processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt", |
|
).to(device=model.device, dtype=torch.bfloat16) |
|
|
|
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) |
|
gen_kwargs = dict( |
|
inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
|
|
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) |
|
t.start() |
|
|
|
output = "" |
|
for new_text in streamer: |
|
output += new_text |
|
yield output |
|
|
|
except Exception as e: |
|
logger.error(f"Error in run: {str(e)}") |
|
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" |
|
|
|
|
|
|
|
|
|
|
|
def _model_gen_with_oom_catch(**kwargs): |
|
""" |
|
๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด |
|
""" |
|
try: |
|
model.generate(**kwargs) |
|
except torch.cuda.OutOfMemoryError: |
|
raise RuntimeError( |
|
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. " |
|
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
examples = [ |
|
[ |
|
{ |
|
"text": "๋ PDF ํ์ผ ๋ด์ฉ์ ๋น๊ตํ๋ผ.", |
|
"files": [ |
|
"assets/additional-examples/before.pdf", |
|
"assets/additional-examples/after.pdf", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ", |
|
"files": ["assets/additional-examples/sample-csv.csv"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์์์ ๋ด์ฉ์ ์ค๋ช
ํ๋ผ", |
|
"files": ["assets/additional-examples/tmp.mp4"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "ํ์ง ๋ด์ฉ์ ์ค๋ช
ํ๊ณ ๊ธ์๋ฅผ ์ฝ์ด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/maz.jpg"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ ๋ ์ฃผ์ํด์ผ ํ ์ ์ด ์์๊น์?", |
|
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์ ๋ถ์ ํ์ด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/4.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ํฐ์ผ์ ์ธ์ ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?", |
|
"files": ["assets/additional-examples/2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.", |
|
"files": [ |
|
"assets/sample-images/09-1.png", |
|
"assets/sample-images/09-2.png", |
|
"assets/sample-images/09-3.png", |
|
"assets/sample-images/09-4.png", |
|
"assets/sample-images/09-5.png", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง์ ์๊ฐ์ ์์์์ ์๊ฐ์ ๋ฐ์ ์๋ฅผ ์์ฑํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/barchart.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ์ธ๊ณ์์ ์ด๊ณ ์์ ์๋ฌผ๋ค์ ์์ํด์ ๋ฌ์ฌํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/08.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด๋ฏธ์ง์ ์๋ ํ
์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.", |
|
"files": ["assets/additional-examples/3.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?", |
|
"files": ["assets/sample-images/02.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "๋ ์ด๋ฏธ์ง๋ฅผ ๋น๊ตํด์ ๊ณตํต์ ๊ณผ ์ฐจ์ด์ ์ ๋งํด์ฃผ์ธ์.", |
|
"files": ["assets/sample-images/03.png"], |
|
} |
|
], |
|
] |
|
|
|
|
|
|
|
|
|
|
|
css = """ |
|
body { |
|
background: linear-gradient(135deg, #667eea, #764ba2); |
|
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; |
|
color: #333; |
|
margin: 0; |
|
padding: 0; |
|
} |
|
.gradio-container { |
|
background: rgba(255, 255, 255, 0.95); |
|
border-radius: 15px; |
|
padding: 30px 40px; |
|
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3); |
|
margin: 40px auto; |
|
max-width: 1200px; |
|
} |
|
.gradio-container h1 { |
|
color: #333; |
|
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2); |
|
} |
|
.fillable { |
|
width: 95% !important; |
|
max-width: unset !important; |
|
} |
|
#examples_container { |
|
margin: auto; |
|
width: 90%; |
|
} |
|
#examples_row { |
|
justify-content: center; |
|
} |
|
button, .btn { |
|
background: linear-gradient(90deg, #ff8a00, #e52e71); |
|
border: none; |
|
color: #fff; |
|
padding: 12px 24px; |
|
text-transform: uppercase; |
|
font-weight: bold; |
|
letter-spacing: 1px; |
|
border-radius: 5px; |
|
cursor: pointer; |
|
transition: transform 0.2s ease-in-out; |
|
} |
|
button:hover, .btn:hover { |
|
transform: scale(1.05); |
|
} |
|
""" |
|
|
|
title_html = """ |
|
<h1 align="center" style="margin-bottom: 0.2em;"> ๐ค Vidraft-G3-27B : Multimodal + VLM + Deep Research </h1> |
|
<p align="center" style="font-size:1.1em; color:#555;"> |
|
@Based by 'MS Gemma-3-27b' @Powered by 'MOUSE-II'(VIDRAFT) |
|
</p> |
|
""" |
|
|
|
with gr.Blocks(css=css, title="Vidraft-G3-27B ") as demo: |
|
gr.Markdown(title_html) |
|
|
|
|
|
web_search_checkbox = gr.Checkbox( |
|
label="Use Web Search (์๋ ํค์๋ ์ถ์ถ)", |
|
value=False |
|
) |
|
|
|
|
|
system_prompt_box = gr.Textbox( |
|
lines=3, |
|
value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem. Please answer in Korean.", |
|
visible=False |
|
) |
|
max_tokens_slider = gr.Slider( |
|
label="Max New Tokens", |
|
minimum=100, |
|
maximum=8000, |
|
step=50, |
|
value=2000, |
|
visible=False |
|
) |
|
web_search_text = gr.Textbox( |
|
lines=1, |
|
label="(Unused) Web Search Query", |
|
placeholder="No direct input needed", |
|
visible=False |
|
) |
|
|
|
|
|
chat = gr.ChatInterface( |
|
fn=run, |
|
type="messages", |
|
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), |
|
textbox=gr.MultimodalTextbox( |
|
file_types=[ |
|
".webp", ".png", ".jpg", ".jpeg", ".gif", |
|
".mp4", ".csv", ".txt", ".pdf" |
|
], |
|
file_count="multiple", |
|
autofocus=True |
|
), |
|
multimodal=True, |
|
additional_inputs=[ |
|
system_prompt_box, |
|
max_tokens_slider, |
|
web_search_checkbox, |
|
web_search_text, |
|
], |
|
stop_btn=False, |
|
title="https://discord.gg/openfreeai", |
|
examples=examples, |
|
run_examples_on_click=False, |
|
cache_examples=False, |
|
css_paths=None, |
|
delete_cache=(1800, 1800), |
|
) |
|
|
|
with gr.Row(elem_id="examples_row"): |
|
with gr.Column(scale=12, elem_id="examples_container"): |
|
gr.Markdown("### Example Inputs (click to load)") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[], |
|
cache_examples=False |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
demo.launch() |