Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
import os
|
4 |
import re
|
5 |
import tempfile
|
6 |
-
import gc # garbage collector
|
7 |
from collections.abc import Iterator
|
8 |
from threading import Thread
|
9 |
import json
|
@@ -16,16 +16,16 @@ from loguru import logger
|
|
16 |
from PIL import Image
|
17 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
18 |
|
19 |
-
# CSV/TXT
|
20 |
import pandas as pd
|
21 |
-
# PDF
|
22 |
import PyPDF2
|
23 |
|
24 |
##############################################################################
|
25 |
-
#
|
26 |
##############################################################################
|
27 |
def clear_cuda_cache():
|
28 |
-
"""CUDA
|
29 |
if torch.cuda.is_available():
|
30 |
torch.cuda.empty_cache()
|
31 |
gc.collect()
|
@@ -36,13 +36,11 @@ def clear_cuda_cache():
|
|
36 |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
37 |
|
38 |
##############################################################################
|
39 |
-
#
|
40 |
##############################################################################
|
41 |
def extract_keywords(text: str, top_k: int = 5) -> str:
|
42 |
"""
|
43 |
-
|
44 |
-
2) 공백 기준 토큰 분리
|
45 |
-
3) 최대 top_k개만
|
46 |
"""
|
47 |
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text)
|
48 |
tokens = text.split()
|
@@ -50,13 +48,11 @@ def extract_keywords(text: str, top_k: int = 5) -> str:
|
|
50 |
return " ".join(key_tokens)
|
51 |
|
52 |
##############################################################################
|
53 |
-
# SerpHouse Live endpoint
|
54 |
-
# - 상위 20개 결과 JSON을 LLM에 넘길 때 link, snippet 등 모두 포함
|
55 |
##############################################################################
|
56 |
def do_web_search(query: str) -> str:
|
57 |
"""
|
58 |
-
|
59 |
-
JSON 문자열 형태로 반환
|
60 |
"""
|
61 |
try:
|
62 |
url = "https://api.serphouse.com/serp/live"
|
@@ -65,55 +61,55 @@ def do_web_search(query: str) -> str:
|
|
65 |
params = {
|
66 |
"q": query,
|
67 |
"domain": "google.com",
|
68 |
-
"serp_type": "web", #
|
69 |
"device": "desktop",
|
70 |
"lang": "en",
|
71 |
-
"num": "20" #
|
72 |
}
|
73 |
|
74 |
headers = {
|
75 |
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
|
76 |
}
|
77 |
|
78 |
-
logger.info(f"SerpHouse API
|
79 |
-
logger.info(f"
|
80 |
|
81 |
-
# GET
|
82 |
response = requests.get(url, headers=headers, params=params, timeout=60)
|
83 |
response.raise_for_status()
|
84 |
|
85 |
-
logger.info(f"SerpHouse API
|
86 |
data = response.json()
|
87 |
|
88 |
-
#
|
89 |
results = data.get("results", {})
|
90 |
organic = None
|
91 |
|
92 |
-
#
|
93 |
if isinstance(results, dict) and "organic" in results:
|
94 |
organic = results["organic"]
|
95 |
|
96 |
-
#
|
97 |
elif isinstance(results, dict) and "results" in results:
|
98 |
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
99 |
organic = results["results"]["organic"]
|
100 |
|
101 |
-
#
|
102 |
elif "organic" in data:
|
103 |
organic = data["organic"]
|
104 |
|
105 |
if not organic:
|
106 |
-
logger.warning("
|
107 |
-
logger.debug(f"
|
108 |
if isinstance(results, dict):
|
109 |
-
logger.debug(f"results
|
110 |
return "No web search results found or unexpected API response structure."
|
111 |
|
112 |
-
#
|
113 |
max_results = min(20, len(organic))
|
114 |
limited_organic = organic[:max_results]
|
115 |
|
116 |
-
#
|
117 |
summary_lines = []
|
118 |
for idx, item in enumerate(limited_organic, start=1):
|
119 |
title = item.get("title", "No title")
|
@@ -121,26 +117,22 @@ def do_web_search(query: str) -> str:
|
|
121 |
snippet = item.get("snippet", "No description")
|
122 |
displayed_link = item.get("displayed_link", link)
|
123 |
|
124 |
-
#
|
125 |
summary_lines.append(
|
126 |
f"### Result {idx}: {title}\n\n"
|
127 |
f"{snippet}\n\n"
|
128 |
-
f"
|
129 |
f"---\n"
|
130 |
)
|
131 |
|
132 |
-
#
|
133 |
instructions = """
|
134 |
# X-RAY Security Scanning Reference Results
|
135 |
-
|
136 |
-
1. Reference security protocols and standards from the results
|
137 |
-
2. Compare findings with known threat patterns
|
138 |
-
3. Cite relevant security guidelines when applicable
|
139 |
-
4. Use multiple sources to verify threat assessments
|
140 |
"""
|
141 |
|
142 |
search_results = instructions + "\n".join(summary_lines)
|
143 |
-
logger.info(f"
|
144 |
return search_results
|
145 |
|
146 |
except Exception as e:
|
@@ -149,10 +141,10 @@ Below are search results about X-RAY security scanning and threat detection. Use
|
|
149 |
|
150 |
|
151 |
##############################################################################
|
152 |
-
#
|
153 |
##############################################################################
|
154 |
MAX_CONTENT_CHARS = 2000
|
155 |
-
MAX_INPUT_LENGTH = 2096 #
|
156 |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
|
157 |
|
158 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
@@ -160,17 +152,17 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
160 |
model_id,
|
161 |
device_map="auto",
|
162 |
torch_dtype=torch.bfloat16,
|
163 |
-
attn_implementation="eager" #
|
164 |
)
|
165 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
166 |
|
167 |
|
168 |
##############################################################################
|
169 |
-
# CSV, TXT, PDF
|
170 |
##############################################################################
|
171 |
def analyze_csv_file(path: str) -> str:
|
172 |
"""
|
173 |
-
CSV
|
174 |
"""
|
175 |
try:
|
176 |
df = pd.read_csv(path)
|
@@ -186,7 +178,7 @@ def analyze_csv_file(path: str) -> str:
|
|
186 |
|
187 |
def analyze_txt_file(path: str) -> str:
|
188 |
"""
|
189 |
-
TXT
|
190 |
"""
|
191 |
try:
|
192 |
with open(path, "r", encoding="utf-8") as f:
|
@@ -200,7 +192,7 @@ def analyze_txt_file(path: str) -> str:
|
|
200 |
|
201 |
def pdf_to_markdown(pdf_path: str) -> str:
|
202 |
"""
|
203 |
-
PDF
|
204 |
"""
|
205 |
text_chunks = []
|
206 |
try:
|
@@ -228,7 +220,7 @@ def pdf_to_markdown(pdf_path: str) -> str:
|
|
228 |
|
229 |
|
230 |
##############################################################################
|
231 |
-
#
|
232 |
##############################################################################
|
233 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
234 |
image_count = 0
|
@@ -293,7 +285,7 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
293 |
|
294 |
|
295 |
##############################################################################
|
296 |
-
#
|
297 |
##############################################################################
|
298 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
299 |
vidcap = cv2.VideoCapture(video_path)
|
@@ -307,7 +299,7 @@ def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
|
307 |
success, image = vidcap.read()
|
308 |
if success:
|
309 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
310 |
-
#
|
311 |
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
312 |
pil_image = Image.fromarray(image)
|
313 |
timestamp = round(i / fps, 2)
|
@@ -321,14 +313,14 @@ def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
|
321 |
|
322 |
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
323 |
content = []
|
324 |
-
temp_files = [] #
|
325 |
|
326 |
frames = downsample_video(video_path)
|
327 |
for frame in frames:
|
328 |
pil_image, timestamp = frame
|
329 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
330 |
pil_image.save(temp_file.name)
|
331 |
-
temp_files.append(temp_file.name) #
|
332 |
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
333 |
content.append({"type": "image", "url": temp_file.name})
|
334 |
|
@@ -336,7 +328,7 @@ def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
|
336 |
|
337 |
|
338 |
##############################################################################
|
339 |
-
# interleaved <image>
|
340 |
##############################################################################
|
341 |
def process_interleaved_images(message: dict) -> list[dict]:
|
342 |
parts = re.split(r"(<image>)", message["text"])
|
@@ -358,7 +350,7 @@ def process_interleaved_images(message: dict) -> list[dict]:
|
|
358 |
|
359 |
|
360 |
##############################################################################
|
361 |
-
# PDF + CSV + TXT +
|
362 |
##############################################################################
|
363 |
def is_image_file(file_path: str) -> bool:
|
364 |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
@@ -375,7 +367,7 @@ def is_document_file(file_path: str) -> bool:
|
|
375 |
|
376 |
|
377 |
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
378 |
-
temp_files = [] #
|
379 |
|
380 |
if not message["files"]:
|
381 |
return [{"type": "text", "text": message["text"]}], temp_files
|
@@ -419,7 +411,7 @@ def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
|
419 |
|
420 |
|
421 |
##############################################################################
|
422 |
-
# history -> LLM
|
423 |
##############################################################################
|
424 |
def process_history(history: list[dict]) -> list[dict]:
|
425 |
messages = []
|
@@ -448,26 +440,26 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
448 |
|
449 |
|
450 |
##############################################################################
|
451 |
-
#
|
452 |
##############################################################################
|
453 |
def _model_gen_with_oom_catch(**kwargs):
|
454 |
"""
|
455 |
-
|
456 |
"""
|
457 |
try:
|
458 |
model.generate(**kwargs)
|
459 |
except torch.cuda.OutOfMemoryError:
|
460 |
raise RuntimeError(
|
461 |
-
"[OutOfMemoryError] GPU
|
462 |
-
"Max New Tokens
|
463 |
)
|
464 |
finally:
|
465 |
-
#
|
466 |
clear_cuda_cache()
|
467 |
|
468 |
|
469 |
##############################################################################
|
470 |
-
#
|
471 |
##############################################################################
|
472 |
@spaces.GPU(duration=120)
|
473 |
def run(
|
@@ -483,12 +475,12 @@ def run(
|
|
483 |
yield ""
|
484 |
return
|
485 |
|
486 |
-
temp_files = [] #
|
487 |
|
488 |
try:
|
489 |
combined_system_msg = ""
|
490 |
|
491 |
-
#
|
492 |
if system_prompt.strip():
|
493 |
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"
|
494 |
|
@@ -499,14 +491,6 @@ def run(
|
|
499 |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
500 |
ws_result = do_web_search(ws_query)
|
501 |
combined_system_msg += f"[X-RAY Security Reference Data]\n{ws_result}\n\n"
|
502 |
-
combined_system_msg += """
|
503 |
-
[IMPORTANT SECURITY ANALYSIS GUIDELINES]
|
504 |
-
1. Systematically scan and identify ALL potential threats in the X-RAY image
|
505 |
-
2. Reference security protocols and threat detection standards from search results
|
506 |
-
3. Use proper threat classification terminology
|
507 |
-
4. Provide threat severity levels (HIGH/MEDIUM/LOW)
|
508 |
-
5. Suggest appropriate security response actions
|
509 |
-
"""
|
510 |
else:
|
511 |
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
|
512 |
|
@@ -520,7 +504,7 @@ def run(
|
|
520 |
messages.extend(process_history(history))
|
521 |
|
522 |
user_content, user_temp_files = process_new_user_message(message)
|
523 |
-
temp_files.extend(user_temp_files) #
|
524 |
|
525 |
for item in user_content:
|
526 |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
@@ -535,7 +519,7 @@ def run(
|
|
535 |
return_tensors="pt",
|
536 |
).to(device=model.device, dtype=torch.bfloat16)
|
537 |
|
538 |
-
#
|
539 |
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
|
540 |
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
|
541 |
if 'attention_mask' in inputs:
|
@@ -558,10 +542,10 @@ def run(
|
|
558 |
|
559 |
except Exception as e:
|
560 |
logger.error(f"Error in run: {str(e)}")
|
561 |
-
yield f"
|
562 |
|
563 |
finally:
|
564 |
-
#
|
565 |
for temp_file in temp_files:
|
566 |
try:
|
567 |
if os.path.exists(temp_file):
|
@@ -570,7 +554,7 @@ def run(
|
|
570 |
except Exception as e:
|
571 |
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
|
572 |
|
573 |
-
#
|
574 |
try:
|
575 |
del inputs, streamer
|
576 |
except:
|
@@ -581,7 +565,7 @@ def run(
|
|
581 |
|
582 |
|
583 |
##############################################################################
|
584 |
-
# X-RAY
|
585 |
##############################################################################
|
586 |
examples = [
|
587 |
[
|
@@ -647,108 +631,64 @@ examples = [
|
|
647 |
]
|
648 |
|
649 |
##############################################################################
|
650 |
-
# Gradio UI (Blocks) 구성
|
651 |
##############################################################################
|
652 |
css = """
|
653 |
-
/* X-RAY Security Scanner Theme */
|
654 |
.gradio-container {
|
655 |
-
background:
|
656 |
padding: 30px 40px;
|
657 |
margin: 20px auto;
|
658 |
width: 100% !important;
|
659 |
max-width: none !important;
|
660 |
-
border: 2px solid #00ff00;
|
661 |
-
box-shadow: 0 0 20px rgba(0, 255, 0, 0.3);
|
662 |
}
|
663 |
.fillable {
|
664 |
width: 100% !important;
|
665 |
max-width: 100% !important;
|
666 |
}
|
667 |
body {
|
668 |
-
background:
|
669 |
margin: 0;
|
670 |
padding: 0;
|
671 |
-
font-family: '
|
672 |
-
color: #
|
673 |
}
|
674 |
-
/* Security-themed buttons */
|
675 |
button, .btn {
|
676 |
-
background:
|
677 |
-
border: 1px solid #
|
678 |
-
color: #
|
679 |
padding: 12px 24px;
|
680 |
text-transform: uppercase;
|
681 |
font-weight: bold;
|
682 |
letter-spacing: 1px;
|
683 |
cursor: pointer;
|
684 |
-
transition: all 0.3s;
|
685 |
}
|
686 |
button:hover, .btn:hover {
|
687 |
-
background: rgba(0,
|
688 |
-
box-shadow: 0 0 10px rgba(0, 255, 0, 0.5);
|
689 |
}
|
690 |
|
691 |
-
/* Alert-style headers */
|
692 |
h1, h2, h3 {
|
693 |
-
color: #
|
694 |
-
text-shadow: 0 0 10px rgba(0, 255, 0, 0.5);
|
695 |
}
|
696 |
|
697 |
-
/* Input fields with security theme */
|
698 |
.multimodal-textbox, textarea, input {
|
699 |
-
background: rgba(
|
700 |
-
border: 1px solid #
|
701 |
-
color: #
|
702 |
}
|
703 |
|
704 |
-
/* Chat interface security styling */
|
705 |
.chatbox, .chatbot, .message {
|
706 |
-
background:
|
707 |
-
border: 1px solid #00ff00;
|
708 |
}
|
709 |
|
710 |
-
/* Example section styling */
|
711 |
#examples_container, .examples-container {
|
712 |
margin: auto;
|
713 |
width: 90%;
|
714 |
-
background:
|
715 |
-
border: 1px solid #00ff00;
|
716 |
-
padding: 20px;
|
717 |
-
}
|
718 |
-
|
719 |
-
/* Security alert animation */
|
720 |
-
@keyframes security-pulse {
|
721 |
-
0% { box-shadow: 0 0 10px rgba(0, 255, 0, 0.5); }
|
722 |
-
50% { box-shadow: 0 0 20px rgba(0, 255, 0, 0.8); }
|
723 |
-
100% { box-shadow: 0 0 10px rgba(0, 255, 0, 0.5); }
|
724 |
-
}
|
725 |
-
|
726 |
-
.gradio-container {
|
727 |
-
animation: security-pulse 2s infinite;
|
728 |
}
|
729 |
-
|
730 |
-
/* Threat level indicators */
|
731 |
-
.threat-high { color: #ff0000; font-weight: bold; }
|
732 |
-
.threat-medium { color: #ffaa00; font-weight: bold; }
|
733 |
-
.threat-low { color: #00ff00; font-weight: bold; }
|
734 |
"""
|
735 |
|
736 |
title_html = """
|
737 |
-
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;
|
738 |
-
🔍 Gemma-3-R1984-4B-BEAM 🔍
|
739 |
-
</h1>
|
740 |
-
<p align="center" style="font-size:1.1em; color:#00ff00; text-shadow: 0 0 10px #00ff00;">
|
741 |
-
⚡ X-RAY Security Threat Detection System ⚡<br>
|
742 |
-
✅ Real-time Weapon Detection ✅ Explosive Material Identification<br>
|
743 |
-
✅ Prohibited Item Classification ✅ Multi-threat Analysis<br>
|
744 |
-
<span style="color: #ffaa00;">⚠️ Detects: Guns, Knives, Bombs, Batteries, Scissors, Springs, Liquids >100ml, EOD Components ⚠️</span><br>
|
745 |
-
<span style="font-size: 0.9em;">Powered by Advanced AI Vision Model • Based on Google Gemma-3-4b • Enhanced by VIDRAFT</span>
|
746 |
-
</p>
|
747 |
-
<div align="center" style="margin: 10px 0; padding: 10px; border: 2px solid #ff0000; background: rgba(255, 0, 0, 0.1);">
|
748 |
-
<p style="color: #ff0000; margin: 0; font-weight: bold;">
|
749 |
-
🚨 SECURITY ALERT: This system is for authorized security personnel only 🚨
|
750 |
-
</p>
|
751 |
-
</div>
|
752 |
"""
|
753 |
|
754 |
|
@@ -757,11 +697,11 @@ with gr.Blocks(css=css, title="Gemma-3-R1984-4B-BEAM - X-RAY Security Scanner")
|
|
757 |
|
758 |
# Display the web search option (while the system prompt and token slider remain hidden)
|
759 |
web_search_checkbox = gr.Checkbox(
|
760 |
-
label="
|
761 |
value=False
|
762 |
)
|
763 |
|
764 |
-
# X-RAY
|
765 |
system_prompt_box = gr.Textbox(
|
766 |
lines=3,
|
767 |
value="""You are an advanced X-RAY security scanning AI specialized in threat detection and aviation security. Your primary mission is to identify ALL potential security threats in X-RAY images with extreme precision.
|
@@ -789,14 +729,14 @@ CRITICAL: Never miss a potential threat. When in doubt, flag for manual inspecti
|
|
789 |
minimum=100,
|
790 |
maximum=8000,
|
791 |
step=50,
|
792 |
-
value=
|
793 |
visible=False # hidden from view
|
794 |
)
|
795 |
|
796 |
web_search_text = gr.Textbox(
|
797 |
lines=1,
|
798 |
-
label="
|
799 |
-
placeholder="
|
800 |
visible=False # hidden from view
|
801 |
)
|
802 |
|
@@ -811,8 +751,7 @@ CRITICAL: Never miss a potential threat. When in doubt, flag for manual inspecti
|
|
811 |
".mp4", ".csv", ".txt", ".pdf"
|
812 |
],
|
813 |
file_count="multiple",
|
814 |
-
autofocus=True
|
815 |
-
placeholder="Upload X-RAY images for security analysis..."
|
816 |
),
|
817 |
multimodal=True,
|
818 |
additional_inputs=[
|
@@ -822,7 +761,7 @@ CRITICAL: Never miss a potential threat. When in doubt, flag for manual inspecti
|
|
822 |
web_search_text,
|
823 |
],
|
824 |
stop_btn=False,
|
825 |
-
title='<a href="https://discord.gg/openfreeai" target="_blank"
|
826 |
examples=examples,
|
827 |
run_examples_on_click=False,
|
828 |
cache_examples=False,
|
@@ -833,11 +772,7 @@ CRITICAL: Never miss a potential threat. When in doubt, flag for manual inspecti
|
|
833 |
# Example section - since examples are already set in ChatInterface, this is for display only
|
834 |
with gr.Row(elem_id="examples_row"):
|
835 |
with gr.Column(scale=12, elem_id="examples_container"):
|
836 |
-
|
837 |
-
### 🔍 X-RAY Security Scanning Examples
|
838 |
-
Click any example below to load a pre-configured security scan scenario.
|
839 |
-
Each example demonstrates different threat detection capabilities of the BEAM system.
|
840 |
-
""")
|
841 |
|
842 |
|
843 |
if __name__ == "__main__":
|
|
|
3 |
import os
|
4 |
import re
|
5 |
import tempfile
|
6 |
+
import gc # garbage collector
|
7 |
from collections.abc import Iterator
|
8 |
from threading import Thread
|
9 |
import json
|
|
|
16 |
from PIL import Image
|
17 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
18 |
|
19 |
+
# CSV/TXT analysis
|
20 |
import pandas as pd
|
21 |
+
# PDF text extraction
|
22 |
import PyPDF2
|
23 |
|
24 |
##############################################################################
|
25 |
+
# Memory cleanup function
|
26 |
##############################################################################
|
27 |
def clear_cuda_cache():
|
28 |
+
"""Clear CUDA cache explicitly."""
|
29 |
if torch.cuda.is_available():
|
30 |
torch.cuda.empty_cache()
|
31 |
gc.collect()
|
|
|
36 |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
37 |
|
38 |
##############################################################################
|
39 |
+
# Simple keyword extraction function
|
40 |
##############################################################################
|
41 |
def extract_keywords(text: str, top_k: int = 5) -> str:
|
42 |
"""
|
43 |
+
Extract keywords from text
|
|
|
|
|
44 |
"""
|
45 |
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text)
|
46 |
tokens = text.split()
|
|
|
48 |
return " ".join(key_tokens)
|
49 |
|
50 |
##############################################################################
|
51 |
+
# SerpHouse Live endpoint call
|
|
|
52 |
##############################################################################
|
53 |
def do_web_search(query: str) -> str:
|
54 |
"""
|
55 |
+
Return top 20 'organic' results as JSON string
|
|
|
56 |
"""
|
57 |
try:
|
58 |
url = "https://api.serphouse.com/serp/live"
|
|
|
61 |
params = {
|
62 |
"q": query,
|
63 |
"domain": "google.com",
|
64 |
+
"serp_type": "web", # Basic web search
|
65 |
"device": "desktop",
|
66 |
"lang": "en",
|
67 |
+
"num": "20" # Request max 20 results
|
68 |
}
|
69 |
|
70 |
headers = {
|
71 |
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
|
72 |
}
|
73 |
|
74 |
+
logger.info(f"SerpHouse API call... query: {query}")
|
75 |
+
logger.info(f"Request URL: {url} - params: {params}")
|
76 |
|
77 |
+
# GET request
|
78 |
response = requests.get(url, headers=headers, params=params, timeout=60)
|
79 |
response.raise_for_status()
|
80 |
|
81 |
+
logger.info(f"SerpHouse API response status: {response.status_code}")
|
82 |
data = response.json()
|
83 |
|
84 |
+
# Handle various response structures
|
85 |
results = data.get("results", {})
|
86 |
organic = None
|
87 |
|
88 |
+
# Possible response structure 1
|
89 |
if isinstance(results, dict) and "organic" in results:
|
90 |
organic = results["organic"]
|
91 |
|
92 |
+
# Possible response structure 2 (nested results)
|
93 |
elif isinstance(results, dict) and "results" in results:
|
94 |
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
95 |
organic = results["results"]["organic"]
|
96 |
|
97 |
+
# Possible response structure 3 (top-level organic)
|
98 |
elif "organic" in data:
|
99 |
organic = data["organic"]
|
100 |
|
101 |
if not organic:
|
102 |
+
logger.warning("No organic results found in response.")
|
103 |
+
logger.debug(f"Response structure: {list(data.keys())}")
|
104 |
if isinstance(results, dict):
|
105 |
+
logger.debug(f"results structure: {list(results.keys())}")
|
106 |
return "No web search results found or unexpected API response structure."
|
107 |
|
108 |
+
# Limit results and optimize context length
|
109 |
max_results = min(20, len(organic))
|
110 |
limited_organic = organic[:max_results]
|
111 |
|
112 |
+
# Format results for better readability
|
113 |
summary_lines = []
|
114 |
for idx, item in enumerate(limited_organic, start=1):
|
115 |
title = item.get("title", "No title")
|
|
|
117 |
snippet = item.get("snippet", "No description")
|
118 |
displayed_link = item.get("displayed_link", link)
|
119 |
|
120 |
+
# Markdown format
|
121 |
summary_lines.append(
|
122 |
f"### Result {idx}: {title}\n\n"
|
123 |
f"{snippet}\n\n"
|
124 |
+
f"**Source**: [{displayed_link}]({link})\n\n"
|
125 |
f"---\n"
|
126 |
)
|
127 |
|
128 |
+
# Add simple instructions for model
|
129 |
instructions = """
|
130 |
# X-RAY Security Scanning Reference Results
|
131 |
+
Use this information to enhance your analysis.
|
|
|
|
|
|
|
|
|
132 |
"""
|
133 |
|
134 |
search_results = instructions + "\n".join(summary_lines)
|
135 |
+
logger.info(f"Processed {len(limited_organic)} search results")
|
136 |
return search_results
|
137 |
|
138 |
except Exception as e:
|
|
|
141 |
|
142 |
|
143 |
##############################################################################
|
144 |
+
# Model/Processor loading
|
145 |
##############################################################################
|
146 |
MAX_CONTENT_CHARS = 2000
|
147 |
+
MAX_INPUT_LENGTH = 2096 # Max input token limit
|
148 |
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
|
149 |
|
150 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
|
|
152 |
model_id,
|
153 |
device_map="auto",
|
154 |
torch_dtype=torch.bfloat16,
|
155 |
+
attn_implementation="eager" # Change to "flash_attention_2" if available
|
156 |
)
|
157 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
158 |
|
159 |
|
160 |
##############################################################################
|
161 |
+
# CSV, TXT, PDF analysis functions
|
162 |
##############################################################################
|
163 |
def analyze_csv_file(path: str) -> str:
|
164 |
"""
|
165 |
+
Convert CSV file to string. Truncate if too long.
|
166 |
"""
|
167 |
try:
|
168 |
df = pd.read_csv(path)
|
|
|
178 |
|
179 |
def analyze_txt_file(path: str) -> str:
|
180 |
"""
|
181 |
+
Read TXT file. Truncate if too long.
|
182 |
"""
|
183 |
try:
|
184 |
with open(path, "r", encoding="utf-8") as f:
|
|
|
192 |
|
193 |
def pdf_to_markdown(pdf_path: str) -> str:
|
194 |
"""
|
195 |
+
Convert PDF text to Markdown. Extract text by pages.
|
196 |
"""
|
197 |
text_chunks = []
|
198 |
try:
|
|
|
220 |
|
221 |
|
222 |
##############################################################################
|
223 |
+
# Image/Video upload limit check
|
224 |
##############################################################################
|
225 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
226 |
image_count = 0
|
|
|
285 |
|
286 |
|
287 |
##############################################################################
|
288 |
+
# Video processing - with temp file tracking
|
289 |
##############################################################################
|
290 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
291 |
vidcap = cv2.VideoCapture(video_path)
|
|
|
299 |
success, image = vidcap.read()
|
300 |
if success:
|
301 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
302 |
+
# Resize image
|
303 |
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
304 |
pil_image = Image.fromarray(image)
|
305 |
timestamp = round(i / fps, 2)
|
|
|
313 |
|
314 |
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
315 |
content = []
|
316 |
+
temp_files = [] # List for tracking temp files
|
317 |
|
318 |
frames = downsample_video(video_path)
|
319 |
for frame in frames:
|
320 |
pil_image, timestamp = frame
|
321 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
322 |
pil_image.save(temp_file.name)
|
323 |
+
temp_files.append(temp_file.name) # Track for deletion later
|
324 |
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
325 |
content.append({"type": "image", "url": temp_file.name})
|
326 |
|
|
|
328 |
|
329 |
|
330 |
##############################################################################
|
331 |
+
# interleaved <image> processing
|
332 |
##############################################################################
|
333 |
def process_interleaved_images(message: dict) -> list[dict]:
|
334 |
parts = re.split(r"(<image>)", message["text"])
|
|
|
350 |
|
351 |
|
352 |
##############################################################################
|
353 |
+
# PDF + CSV + TXT + Image/Video
|
354 |
##############################################################################
|
355 |
def is_image_file(file_path: str) -> bool:
|
356 |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
|
|
367 |
|
368 |
|
369 |
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
370 |
+
temp_files = [] # List for tracking temp files
|
371 |
|
372 |
if not message["files"]:
|
373 |
return [{"type": "text", "text": message["text"]}], temp_files
|
|
|
411 |
|
412 |
|
413 |
##############################################################################
|
414 |
+
# history -> LLM message conversion
|
415 |
##############################################################################
|
416 |
def process_history(history: list[dict]) -> list[dict]:
|
417 |
messages = []
|
|
|
440 |
|
441 |
|
442 |
##############################################################################
|
443 |
+
# Model generation function with OOM catch
|
444 |
##############################################################################
|
445 |
def _model_gen_with_oom_catch(**kwargs):
|
446 |
"""
|
447 |
+
Catch OutOfMemoryError in separate thread
|
448 |
"""
|
449 |
try:
|
450 |
model.generate(**kwargs)
|
451 |
except torch.cuda.OutOfMemoryError:
|
452 |
raise RuntimeError(
|
453 |
+
"[OutOfMemoryError] GPU memory insufficient. "
|
454 |
+
"Please reduce Max New Tokens or prompt length."
|
455 |
)
|
456 |
finally:
|
457 |
+
# Clear cache after generation
|
458 |
clear_cuda_cache()
|
459 |
|
460 |
|
461 |
##############################################################################
|
462 |
+
# Main inference function (with auto web search)
|
463 |
##############################################################################
|
464 |
@spaces.GPU(duration=120)
|
465 |
def run(
|
|
|
475 |
yield ""
|
476 |
return
|
477 |
|
478 |
+
temp_files = [] # For tracking temp files
|
479 |
|
480 |
try:
|
481 |
combined_system_msg = ""
|
482 |
|
483 |
+
# Used internally only (hidden from UI)
|
484 |
if system_prompt.strip():
|
485 |
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n"
|
486 |
|
|
|
491 |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
492 |
ws_result = do_web_search(ws_query)
|
493 |
combined_system_msg += f"[X-RAY Security Reference Data]\n{ws_result}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
else:
|
495 |
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
|
496 |
|
|
|
504 |
messages.extend(process_history(history))
|
505 |
|
506 |
user_content, user_temp_files = process_new_user_message(message)
|
507 |
+
temp_files.extend(user_temp_files) # Track temp files
|
508 |
|
509 |
for item in user_content:
|
510 |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
|
|
519 |
return_tensors="pt",
|
520 |
).to(device=model.device, dtype=torch.bfloat16)
|
521 |
|
522 |
+
# Limit input token count
|
523 |
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
|
524 |
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
|
525 |
if 'attention_mask' in inputs:
|
|
|
542 |
|
543 |
except Exception as e:
|
544 |
logger.error(f"Error in run: {str(e)}")
|
545 |
+
yield f"Error occurred: {str(e)}"
|
546 |
|
547 |
finally:
|
548 |
+
# Delete temp files
|
549 |
for temp_file in temp_files:
|
550 |
try:
|
551 |
if os.path.exists(temp_file):
|
|
|
554 |
except Exception as e:
|
555 |
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
|
556 |
|
557 |
+
# Explicit memory cleanup
|
558 |
try:
|
559 |
del inputs, streamer
|
560 |
except:
|
|
|
565 |
|
566 |
|
567 |
##############################################################################
|
568 |
+
# X-RAY security scanning examples
|
569 |
##############################################################################
|
570 |
examples = [
|
571 |
[
|
|
|
631 |
]
|
632 |
|
633 |
##############################################################################
|
634 |
+
# Gradio UI (Blocks) 구성
|
635 |
##############################################################################
|
636 |
css = """
|
|
|
637 |
.gradio-container {
|
638 |
+
background: white;
|
639 |
padding: 30px 40px;
|
640 |
margin: 20px auto;
|
641 |
width: 100% !important;
|
642 |
max-width: none !important;
|
|
|
|
|
643 |
}
|
644 |
.fillable {
|
645 |
width: 100% !important;
|
646 |
max-width: 100% !important;
|
647 |
}
|
648 |
body {
|
649 |
+
background: white;
|
650 |
margin: 0;
|
651 |
padding: 0;
|
652 |
+
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
653 |
+
color: #333;
|
654 |
}
|
|
|
655 |
button, .btn {
|
656 |
+
background: transparent !important;
|
657 |
+
border: 1px solid #ddd;
|
658 |
+
color: #333;
|
659 |
padding: 12px 24px;
|
660 |
text-transform: uppercase;
|
661 |
font-weight: bold;
|
662 |
letter-spacing: 1px;
|
663 |
cursor: pointer;
|
|
|
664 |
}
|
665 |
button:hover, .btn:hover {
|
666 |
+
background: rgba(0, 0, 0, 0.05) !important;
|
|
|
667 |
}
|
668 |
|
|
|
669 |
h1, h2, h3 {
|
670 |
+
color: #333;
|
|
|
671 |
}
|
672 |
|
|
|
673 |
.multimodal-textbox, textarea, input {
|
674 |
+
background: rgba(255, 255, 255, 0.5) !important;
|
675 |
+
border: 1px solid #ddd;
|
676 |
+
color: #333;
|
677 |
}
|
678 |
|
|
|
679 |
.chatbox, .chatbot, .message {
|
680 |
+
background: transparent !important;
|
|
|
681 |
}
|
682 |
|
|
|
683 |
#examples_container, .examples-container {
|
684 |
margin: auto;
|
685 |
width: 90%;
|
686 |
+
background: transparent !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
687 |
}
|
|
|
|
|
|
|
|
|
|
|
688 |
"""
|
689 |
|
690 |
title_html = """
|
691 |
+
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;">Gemma-3-R1984-4B-BEAM</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
"""
|
693 |
|
694 |
|
|
|
697 |
|
698 |
# Display the web search option (while the system prompt and token slider remain hidden)
|
699 |
web_search_checkbox = gr.Checkbox(
|
700 |
+
label="Deep Research",
|
701 |
value=False
|
702 |
)
|
703 |
|
704 |
+
# X-RAY security scanning system prompt
|
705 |
system_prompt_box = gr.Textbox(
|
706 |
lines=3,
|
707 |
value="""You are an advanced X-RAY security scanning AI specialized in threat detection and aviation security. Your primary mission is to identify ALL potential security threats in X-RAY images with extreme precision.
|
|
|
729 |
minimum=100,
|
730 |
maximum=8000,
|
731 |
step=50,
|
732 |
+
value=1000,
|
733 |
visible=False # hidden from view
|
734 |
)
|
735 |
|
736 |
web_search_text = gr.Textbox(
|
737 |
lines=1,
|
738 |
+
label="Web Search Query",
|
739 |
+
placeholder="",
|
740 |
visible=False # hidden from view
|
741 |
)
|
742 |
|
|
|
751 |
".mp4", ".csv", ".txt", ".pdf"
|
752 |
],
|
753 |
file_count="multiple",
|
754 |
+
autofocus=True
|
|
|
755 |
),
|
756 |
multimodal=True,
|
757 |
additional_inputs=[
|
|
|
761 |
web_search_text,
|
762 |
],
|
763 |
stop_btn=False,
|
764 |
+
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
|
765 |
examples=examples,
|
766 |
run_examples_on_click=False,
|
767 |
cache_examples=False,
|
|
|
772 |
# Example section - since examples are already set in ChatInterface, this is for display only
|
773 |
with gr.Row(elem_id="examples_row"):
|
774 |
with gr.Column(scale=12, elem_id="examples_container"):
|
775 |
+
pass
|
|
|
|
|
|
|
|
|
776 |
|
777 |
|
778 |
if __name__ == "__main__":
|