File size: 4,151 Bytes
78360e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Installation Guide
This guide covers installation for different GPU generations and operating systems.
## Requirements
- Python 3.10.9
- Conda or Python venv
- Compatible GPU (RTX 10XX or newer recommended)
## Installation for RTX 10XX to RTX 40XX (Stable)
This installation uses PyTorch 2.6.0 which is well-tested and stable.
### Step 1: Download and Setup Environment
```shell
# Clone the repository
git clone https://github.com/deepbeepmeep/Wan2GP.git
cd Wan2GP
# Create Python 3.10.9 environment using conda
conda create -n wan2gp python=3.10.9
conda activate wan2gp
```
### Step 2: Install PyTorch
```shell
# Install PyTorch 2.6.0 with CUDA 12.4
pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu124
```
### Step 3: Install Dependencies
```shell
# Install core dependencies
pip install -r requirements.txt
```
### Step 4: Optional Performance Optimizations
#### Sage Attention (30% faster)
```shell
# Windows only: Install Triton
pip install triton-windows
# For both Windows and Linux
pip install sageattention==1.0.6
```
#### Sage 2 Attention (40% faster)
```shell
# Windows
pip install triton-windows
pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu126torch2.6.0-cp310-cp310-win_amd64.whl
# Linux (manual compilation required)
git clone https://github.com/thu-ml/SageAttention
cd SageAttention
pip install -e .
```
#### Flash Attention
```shell
# May require CUDA kernel compilation on Windows
pip install flash-attn==2.7.2.post1
```
## Installation for RTX 50XX (Beta)
RTX 50XX GPUs require PyTorch 2.7.0 (beta). This version may be less stable.
⚠️ **Important:** Use Python 3.10 for compatibility with pip wheels.
### Step 1: Setup Environment
```shell
# Clone and setup (same as above)
git clone https://github.com/deepbeepmeep/Wan2GP.git
cd Wan2GP
conda create -n wan2gp python=3.10.9
conda activate wan2gp
```
### Step 2: Install PyTorch Beta
```shell
# Install PyTorch 2.7.0 with CUDA 12.8
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu128
```
### Step 3: Install Dependencies
```shell
pip install -r requirements.txt
```
### Step 4: Optional Optimizations for RTX 50XX
#### Sage Attention
```shell
# Windows
pip install triton-windows
pip install sageattention==1.0.6
# Linux
pip install sageattention==1.0.6
```
#### Sage 2 Attention
```shell
# Windows
pip install triton-windows
pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu128torch2.7.0-cp310-cp310-win_amd64.whl
# Linux (manual compilation)
git clone https://github.com/thu-ml/SageAttention
cd SageAttention
pip install -e .
```
## Attention Modes
WanGP supports several attention implementations:
- **SDPA** (default): Available by default with PyTorch
- **Sage**: 30% speed boost with small quality cost
- **Sage2**: 40% speed boost
- **Flash**: Good performance, may be complex to install on Windows
## Performance Profiles
Choose a profile based on your hardware:
- **Profile 3 (LowRAM_HighVRAM)**: Loads entire model in VRAM, requires 24GB VRAM for 8-bit quantized 14B model
- **Profile 4 (LowRAM_LowVRAM)**: Default, loads model parts as needed, slower but lower VRAM requirement
## Troubleshooting
### Sage Attention Issues
If Sage attention doesn't work:
1. Check if Triton is properly installed
2. Clear Triton cache
3. Fallback to SDPA attention:
```bash
python wgp.py --attention sdpa
```
### Memory Issues
- Use lower resolution or shorter videos
- Enable quantization (default)
- Use Profile 4 for lower VRAM usage
- Consider using 1.3B models instead of 14B models
### GPU Compatibility
- RTX 10XX, 20XX: Supported with SDPA attention
- RTX 30XX, 40XX: Full feature support
- RTX 50XX: Beta support with PyTorch 2.7.0
For more troubleshooting, see [TROUBLESHOOTING.md](TROUBLESHOOTING.md) |