File size: 16,933 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import torch
import triton
import triton.language as tl

def hunyuan_token_reorder_to_token_major(tensor, fix_len, reorder_len, reorder_num_frame, frame_size):
    """Reorder it from frame major to token major!"""
    assert reorder_len == reorder_num_frame * frame_size
    assert tensor.shape[2] == fix_len + reorder_len

    tensor[:, :, :-fix_len, :] = tensor[:, :, :-fix_len:, :].reshape(tensor.shape[0], tensor.shape[1], reorder_num_frame, frame_size, tensor.shape[3]) \
                                                         .transpose(2, 3).reshape(tensor.shape[0], tensor.shape[1], reorder_len, tensor.shape[3])
    return tensor

def hunyuan_token_reorder_to_frame_major(tensor, fix_len, reorder_len, reorder_num_frame, frame_size):
    """Reorder it from token major to frame major!"""
    assert reorder_len == reorder_num_frame * frame_size
    assert tensor.shape[2] == fix_len + reorder_len

    tensor[:, :, :-fix_len:, :] = tensor[:, :, :-fix_len:, :].reshape(tensor.shape[0], tensor.shape[1], frame_size, reorder_num_frame, tensor.shape[3]) \
                                                         .transpose(2, 3).reshape(tensor.shape[0], tensor.shape[1], reorder_len, tensor.shape[3])
    return tensor


@triton.jit
def hunyuan_sparse_head_placement_kernel(

    query_ptr, key_ptr, value_ptr, # [cfg, num_heads, seq_len, head_dim] seq_len = context_length + num_frame * frame_size

    query_out_ptr, key_out_ptr, value_out_ptr, # [cfg, num_heads, seq_len, head_dim]

    best_mask_idx_ptr, # [cfg, num_heads]

    query_stride_b, query_stride_h, query_stride_s, query_stride_d,

    mask_idx_stride_b, mask_idx_stride_h,

    seq_len: tl.constexpr,

    head_dim: tl.constexpr,

    context_length: tl.constexpr,   

    num_frame: tl.constexpr,        

    frame_size: tl.constexpr,      

    BLOCK_SIZE: tl.constexpr

):
    # Copy query, key, value to output
    # range: [b, h, block_id * block_size: block_id * block_size + block_size, :]
    cfg = tl.program_id(0)
    head = tl.program_id(1)
    block_id = tl.program_id(2)

    start_id = block_id * BLOCK_SIZE
    end_id = start_id + BLOCK_SIZE
    end_id = tl.where(end_id > seq_len, seq_len, end_id) 

    # Load best mask idx (0 is spatial, 1 is temporal)
    is_temporal = tl.load(best_mask_idx_ptr + cfg * mask_idx_stride_b + head * mask_idx_stride_h)
    
    offset_token = tl.arange(0, BLOCK_SIZE) + start_id
    offset_mask = offset_token < seq_len
    offset_d = tl.arange(0, head_dim)

    if is_temporal:
        frame_id = offset_token // frame_size
        patch_id = offset_token - frame_id * frame_size
        offset_store_token = tl.where(offset_token >= seq_len - context_length, offset_token, patch_id * num_frame + frame_id)

        offset_load = (cfg * query_stride_b + head * query_stride_h + offset_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d
        offset_query = query_ptr + offset_load
        offset_key = key_ptr + offset_load
        offset_value = value_ptr + offset_load

        offset_store = (cfg * query_stride_b + head * query_stride_h + offset_store_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d
        offset_query_out = query_out_ptr + offset_store
        offset_key_out = key_out_ptr + offset_store
        offset_value_out = value_out_ptr + offset_store

        # Maybe tune the pipeline here
        query = tl.load(offset_query, mask=offset_mask[:,None])
        tl.store(offset_query_out, query, mask=offset_mask[:,None])
        key = tl.load(offset_key, mask=offset_mask[:,None])
        tl.store(offset_key_out, key, mask=offset_mask[:,None])
        value = tl.load(offset_value, mask=offset_mask[:,None])
        tl.store(offset_value_out, value, mask=offset_mask[:,None])


    else:
        offset_load = (cfg * query_stride_b + head * query_stride_h + offset_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d
        offset_query = query_ptr + offset_load
        offset_key = key_ptr + offset_load
        offset_value = value_ptr + offset_load

        offset_store = offset_load
        offset_query_out = query_out_ptr + offset_store
        offset_key_out = key_out_ptr + offset_store
        offset_value_out = value_out_ptr + offset_store

        # Maybe tune the pipeline here
        query = tl.load(offset_query, mask=offset_mask[:,None])
        tl.store(offset_query_out, query, mask=offset_mask[:,None])
        key = tl.load(offset_key, mask=offset_mask[:,None])
        tl.store(offset_key_out, key, mask=offset_mask[:,None])
        value = tl.load(offset_value, mask=offset_mask[:,None])
        tl.store(offset_value_out, value, mask=offset_mask[:,None])


def hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size):
    cfg, num_heads, seq_len, head_dim = query.shape
    BLOCK_SIZE = 128
    assert seq_len == context_length + num_frame * frame_size

    grid = (cfg, num_heads, (seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE)

    hunyuan_sparse_head_placement_kernel[grid](
        query, key, value, 
        query_out, key_out, value_out, 
        best_mask_idx,
        query.stride(0), query.stride(1), query.stride(2), query.stride(3),
        best_mask_idx.stride(0), best_mask_idx.stride(1),
        seq_len, head_dim, context_length, num_frame, frame_size, 
        BLOCK_SIZE
    )


def ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size):
    cfg, num_heads, seq_len, head_dim = query.shape
    assert seq_len == context_length + num_frame * frame_size

    query_out = query.clone()
    key_out = key.clone()
    value_out = value.clone()

    # Spatial
    query_out[best_mask_idx == 0], key_out[best_mask_idx == 0], value_out[best_mask_idx == 0] = \
        query[best_mask_idx == 0], key[best_mask_idx == 0], value[best_mask_idx == 0]

    # Temporal
    query_out[best_mask_idx == 1], key_out[best_mask_idx == 1], value_out[best_mask_idx == 1] = \
            hunyuan_token_reorder_to_token_major(query[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0), \
            hunyuan_token_reorder_to_token_major(key[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0), \
            hunyuan_token_reorder_to_token_major(value[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0)

    return query_out, key_out, value_out


def test_hunyuan_sparse_head_placement():

    context_length = 226
    num_frame = 11
    frame_size = 4080

    cfg = 2
    num_heads = 48

    seq_len = context_length + num_frame * frame_size
    head_dim = 64

    dtype = torch.bfloat16
    device = torch.device("cuda")

    query = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
    key = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
    value = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)

    best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)

    query_out = torch.empty_like(query)
    key_out = torch.empty_like(key)
    value_out = torch.empty_like(value)

    hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size)
    ref_query_out, ref_key_out, ref_value_out = ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size)

    torch.testing.assert_close(query_out, ref_query_out)
    torch.testing.assert_close(key_out, ref_key_out)
    torch.testing.assert_close(value_out, ref_value_out)


def benchmark_hunyuan_sparse_head_placement():
    import time

    context_length = 226
    num_frame = 11
    frame_size = 4080

    cfg = 2
    num_heads = 48

    seq_len = context_length + num_frame * frame_size
    head_dim = 64

    dtype = torch.bfloat16
    device = torch.device("cuda")

    query = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
    key = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
    value = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
    best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)

    query_out = torch.empty_like(query)
    key_out = torch.empty_like(key)
    value_out = torch.empty_like(value)

    warmup = 10
    all_iter = 1000

    # warmup
    for _ in range(warmup):
        hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size)

    torch.cuda.synchronize()
    start = time.time()
    for _ in range(all_iter):
        hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size)
    torch.cuda.synchronize()
    end = time.time()

    print(f"Triton Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
    print(f"Triton Total Bandwidth: {query.nelement() * query.element_size() * 3 * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")

    torch.cuda.synchronize()
    start = time.time()
    for _ in range(all_iter):
        ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size)
    torch.cuda.synchronize()
    end = time.time()

    print(f"Reference Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
    print(f"Reference Total Bandwidth: {query.nelement() * query.element_size() * 3 * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")


@triton.jit
def hunyuan_hidden_states_placement_kernel(

    hidden_states_ptr, # [cfg, num_heads, seq_len, head_dim] seq_len = context_length + num_frame * frame_size

    hidden_states_out_ptr, # [cfg, num_heads, seq_len, head_dim]

    best_mask_idx_ptr, # [cfg, num_heads]

    hidden_states_stride_b, hidden_states_stride_h, hidden_states_stride_s, hidden_states_stride_d,

    mask_idx_stride_b, mask_idx_stride_h,

    seq_len: tl.constexpr,

    head_dim: tl.constexpr,

    context_length: tl.constexpr,   

    num_frame: tl.constexpr,        

    frame_size: tl.constexpr,      

    BLOCK_SIZE: tl.constexpr

):
    # Copy hidden_states to output
    # range: [b, h, block_id * block_size: block_id * block_size + block_size, :]
    cfg = tl.program_id(0)
    head = tl.program_id(1)
    block_id = tl.program_id(2)

    start_id = block_id * BLOCK_SIZE
    end_id = start_id + BLOCK_SIZE
    end_id = tl.where(end_id > seq_len, seq_len, end_id) 

    # Load best mask idx (0 is spatial, 1 is temporal)
    is_temporal = tl.load(best_mask_idx_ptr + cfg * mask_idx_stride_b + head * mask_idx_stride_h)
    
    offset_token = tl.arange(0, BLOCK_SIZE) + start_id
    offset_mask = offset_token < seq_len
    offset_d = tl.arange(0, head_dim)

    if is_temporal:
        patch_id = offset_token // num_frame
        frame_id = offset_token - patch_id * num_frame
        offset_store_token = tl.where(offset_token >= seq_len - context_length, offset_token, frame_id * frame_size + patch_id)

        offset_load = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d
        offset_hidden_states = hidden_states_ptr + offset_load

        offset_store = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_store_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d
        offset_hidden_states_out = hidden_states_out_ptr + offset_store

        # Maybe tune the pipeline here
        hidden_states = tl.load(offset_hidden_states, mask=offset_mask[:,None])
        tl.store(offset_hidden_states_out, hidden_states, mask=offset_mask[:,None])
    else:
        offset_load = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d
        offset_hidden_states = hidden_states_ptr + offset_load

        offset_store = offset_load
        offset_hidden_states_out = hidden_states_out_ptr + offset_store

        # Maybe tune the pipeline here
        hidden_states = tl.load(offset_hidden_states, mask=offset_mask[:,None])
        tl.store(offset_hidden_states_out, hidden_states, mask=offset_mask[:,None])


def hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size):
    cfg, num_heads, seq_len, head_dim = hidden_states.shape
    BLOCK_SIZE = 128
    assert seq_len == context_length + num_frame * frame_size

    grid = (cfg, num_heads, (seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE)


    hunyuan_hidden_states_placement_kernel[grid](
        hidden_states, 
        hidden_states_out, 
        best_mask_idx,
        hidden_states.stride(0), hidden_states.stride(1), hidden_states.stride(2), hidden_states.stride(3),
        best_mask_idx.stride(0), best_mask_idx.stride(1),
        seq_len, head_dim, context_length, num_frame, frame_size, 
        BLOCK_SIZE
    )

    return hidden_states_out

def ref_hunyuan_hidden_states_placement(hidden_states, output_hidden_states, best_mask_idx, context_length, num_frame, frame_size):
    cfg, num_heads, seq_len, head_dim = hidden_states.shape
    assert seq_len == context_length + num_frame * frame_size

    # Spatial
    output_hidden_states[best_mask_idx == 0] = hidden_states[best_mask_idx == 0]
    # Temporal
    output_hidden_states[best_mask_idx == 1] = hunyuan_token_reorder_to_frame_major(hidden_states[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0)

def test_hunyuan_hidden_states_placement():

    context_length = 226
    num_frame = 11
    frame_size = 4080

    cfg = 2
    num_heads = 48

    seq_len = context_length + num_frame * frame_size
    head_dim = 64

    dtype = torch.bfloat16
    device = torch.device("cuda")

    hidden_states = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
    best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)

    hidden_states_out1 = torch.empty_like(hidden_states)
    hidden_states_out2 = torch.empty_like(hidden_states)

    hunyuan_hidden_states_placement(hidden_states, hidden_states_out1, best_mask_idx, context_length, num_frame, frame_size)
    ref_hunyuan_hidden_states_placement(hidden_states, hidden_states_out2, best_mask_idx, context_length, num_frame, frame_size)

    torch.testing.assert_close(hidden_states_out1, hidden_states_out2)

def benchmark_hunyuan_hidden_states_placement():
    import time

    context_length = 226
    num_frame = 11
    frame_size = 4080

    cfg = 2
    num_heads = 48

    seq_len = context_length + num_frame * frame_size
    head_dim = 64

    dtype = torch.bfloat16
    device = torch.device("cuda")

    hidden_states = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device)
    best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device)

    hidden_states_out = torch.empty_like(hidden_states)

    warmup = 10
    all_iter = 1000

    # warmup
    for _ in range(warmup):
        hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size)

    torch.cuda.synchronize()
    start = time.time()
    for _ in range(all_iter):
        hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size)
    torch.cuda.synchronize()
    end = time.time()

    print(f"Triton Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
    print(f"Triton Total Bandwidth: {hidden_states.nelement() * hidden_states.element_size() * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")

    torch.cuda.synchronize()
    start = time.time()
    for _ in range(all_iter):
        ref_hunyuan_hidden_states_placement(hidden_states, hidden_states.clone(), best_mask_idx, context_length, num_frame, frame_size)
    torch.cuda.synchronize()
    end = time.time()

    print(f"Reference Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms")
    print(f"Reference Total Bandwidth: {hidden_states.nelement() * hidden_states.element_size() * 2 * all_iter / (end - start) / 1e9:.2f} GB/s")


if __name__ == "__main__":
    test_hunyuan_sparse_head_placement()
    benchmark_hunyuan_sparse_head_placement()
    test_hunyuan_hidden_states_placement()
    benchmark_hunyuan_hidden_states_placement()