File size: 23,264 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
from mmgp import offload
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
from diffusers.utils import logging
from typing import Optional, List, Union
import yaml
from wan.utils.utils import calculate_new_dimensions
import imageio
import json
import numpy as np
import torch
from safetensors import safe_open
from PIL import Image
from transformers import (
    T5EncoderModel,
    T5Tokenizer,
    AutoModelForCausalLM,
    AutoProcessor,
    AutoTokenizer,
)
from huggingface_hub import hf_hub_download

from .models.autoencoders.causal_video_autoencoder import (
    CausalVideoAutoencoder,
)
from .models.transformers.symmetric_patchifier import SymmetricPatchifier
from .models.transformers.transformer3d import Transformer3DModel
from .pipelines.pipeline_ltx_video import (
    ConditioningItem,
    LTXVideoPipeline,
    LTXMultiScalePipeline,
)
from .schedulers.rf import RectifiedFlowScheduler
from .utils.skip_layer_strategy import SkipLayerStrategy
from .models.autoencoders.latent_upsampler import LatentUpsampler
from .pipelines import crf_compressor
import cv2

MAX_HEIGHT = 720
MAX_WIDTH = 1280
MAX_NUM_FRAMES = 257

logger = logging.get_logger("LTX-Video")


def get_total_gpu_memory():
    if torch.cuda.is_available():
        total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
        return total_memory
    return 0


def get_device():
    if torch.cuda.is_available():
        return "cuda"
    elif torch.backends.mps.is_available():
        return "mps"
    return "cpu"


def load_image_to_tensor_with_resize_and_crop(

    image_input: Union[str, Image.Image],

    target_height: int = 512,

    target_width: int = 768,

    just_crop: bool = False,

) -> torch.Tensor:
    """Load and process an image into a tensor.



    Args:

        image_input: Either a file path (str) or a PIL Image object

        target_height: Desired height of output tensor

        target_width: Desired width of output tensor

        just_crop: If True, only crop the image to the target size without resizing

    """
    if isinstance(image_input, str):
        image = Image.open(image_input).convert("RGB")
    elif isinstance(image_input, Image.Image):
        image = image_input
    else:
        raise ValueError("image_input must be either a file path or a PIL Image object")

    input_width, input_height = image.size
    aspect_ratio_target = target_width / target_height
    aspect_ratio_frame = input_width / input_height
    if aspect_ratio_frame > aspect_ratio_target:
        new_width = int(input_height * aspect_ratio_target)
        new_height = input_height
        x_start = (input_width - new_width) // 2
        y_start = 0
    else:
        new_width = input_width
        new_height = int(input_width / aspect_ratio_target)
        x_start = 0
        y_start = (input_height - new_height) // 2

    image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
    if not just_crop:
        image = image.resize((target_width, target_height))

    image = np.array(image)
    image = cv2.GaussianBlur(image, (3, 3), 0)
    frame_tensor = torch.from_numpy(image).float()
    frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
    frame_tensor = frame_tensor.permute(2, 0, 1)
    frame_tensor = (frame_tensor / 127.5) - 1.0
    # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
    return frame_tensor.unsqueeze(0).unsqueeze(2)



def calculate_padding(

    source_height: int, source_width: int, target_height: int, target_width: int

) -> tuple[int, int, int, int]:

    # Calculate total padding needed
    pad_height = target_height - source_height
    pad_width = target_width - source_width

    # Calculate padding for each side
    pad_top = pad_height // 2
    pad_bottom = pad_height - pad_top  # Handles odd padding
    pad_left = pad_width // 2
    pad_right = pad_width - pad_left  # Handles odd padding

    # Return padded tensor
    # Padding format is (left, right, top, bottom)
    padding = (pad_left, pad_right, pad_top, pad_bottom)
    return padding




def seed_everething(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
    if torch.backends.mps.is_available():
        torch.mps.manual_seed(seed)


class LTXV:

    def __init__(

        self,

        model_filepath: str,

        text_encoder_filepath: str,

        dtype = torch.bfloat16,

        VAE_dtype = torch.bfloat16, 

        mixed_precision_transformer = False

    ):

        # if dtype == torch.float16:
        dtype  = torch.bfloat16
        self.mixed_precision_transformer = mixed_precision_transformer
        self.distilled = any("lora" in name for name in model_filepath)
        model_filepath = [name for name in model_filepath if not "lora" in name ]
        # with safe_open(ckpt_path, framework="pt") as f:
        #     metadata = f.metadata()
        #     config_str = metadata.get("config")
        #     configs = json.loads(config_str)
        #     allowed_inference_steps = configs.get("allowed_inference_steps", None)
        # transformer = Transformer3DModel.from_pretrained(ckpt_path)
        # transformer = offload.fast_load_transformers_model("c:/temp/ltxdistilled/diffusion_pytorch_model-00001-of-00006.safetensors",  forcedConfigPath="c:/temp/ltxdistilled/config.json")

        # vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
        vae = offload.fast_load_transformers_model("ckpts/ltxv_0.9.7_VAE.safetensors", modelClass=CausalVideoAutoencoder)
        # if VAE_dtype == torch.float16:
        VAE_dtype = torch.bfloat16

        vae = vae.to(VAE_dtype)
        vae._model_dtype = VAE_dtype
        # vae = offload.fast_load_transformers_model("vae.safetensors", modelClass=CausalVideoAutoencoder, modelPrefix= "vae",  forcedConfigPath="config_vae.json")
        # offload.save_model(vae, "vae.safetensors", config_file_path="config_vae.json")

        # model_filepath = "c:/temp/ltxd/ltxv-13b-0.9.7-distilled.safetensors"
        transformer = offload.fast_load_transformers_model(model_filepath, modelClass=Transformer3DModel) 
        # offload.save_model(transformer, "ckpts/ltxv_0.9.7_13B_distilled_bf16.safetensors", config_file_path= "c:/temp/ltxd/config.json")
        # offload.save_model(transformer, "ckpts/ltxv_0.9.7_13B_distilled_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/ltxd/config.json")
        # transformer = offload.fast_load_transformers_model(model_filepath, modelClass=Transformer3DModel) 
        transformer._model_dtype = dtype
        if mixed_precision_transformer:
            transformer._lock_dtype = torch.float


        scheduler = RectifiedFlowScheduler.from_pretrained("ckpts/ltxv_scheduler.json")
        # transformer = offload.fast_load_transformers_model("ltx_13B_quanto_bf16_int8.safetensors", modelClass=Transformer3DModel, modelPrefix= "model.diffusion_model",  forcedConfigPath="config_transformer.json")
        # offload.save_model(transformer, "ltx_13B_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="config_transformer.json")

        latent_upsampler = LatentUpsampler.from_pretrained("ckpts/ltxv_0.9.7_spatial_upscaler.safetensors").to("cpu").eval()
        latent_upsampler.to(VAE_dtype)
        latent_upsampler._model_dtype = VAE_dtype

        allowed_inference_steps = None

        # text_encoder = T5EncoderModel.from_pretrained(
        #     "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
        # )
        # text_encoder.to(torch.bfloat16)
        # offload.save_model(text_encoder, "T5_xxl_1.1_enc_bf16.safetensors", config_file_path="T5_config.json")
        # offload.save_model(text_encoder, "T5_xxl_1.1_enc_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="T5_config.json")

        text_encoder = offload.fast_load_transformers_model(text_encoder_filepath)
        patchifier = SymmetricPatchifier(patch_size=1)
        tokenizer = T5Tokenizer.from_pretrained( "ckpts/T5_xxl_1.1")

        enhance_prompt = False
        if enhance_prompt:
            prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained( "ckpts/Florence2", trust_remote_code=True)
            prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained( "ckpts/Florence2", trust_remote_code=True)
            prompt_enhancer_llm_model = offload.fast_load_transformers_model("ckpts/Llama3_2_quanto_bf16_int8.safetensors")
            prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained("ckpts/Llama3_2")
        else:
            prompt_enhancer_image_caption_model = None
            prompt_enhancer_image_caption_processor = None
            prompt_enhancer_llm_model = None
            prompt_enhancer_llm_tokenizer = None

        if prompt_enhancer_image_caption_model != None:
            pipe["prompt_enhancer_image_caption_model"] = prompt_enhancer_image_caption_model
            prompt_enhancer_image_caption_model._model_dtype = torch.float
        
            pipe["prompt_enhancer_llm_model"] = prompt_enhancer_llm_model

        # offload.profile(pipe, profile_no=5, extraModelsToQuantize = None, quantizeTransformer = False, budgets = { "prompt_enhancer_llm_model" : 10000, "prompt_enhancer_image_caption_model" : 10000, "vae" : 3000, "*" : 100 }, verboseLevel=2)


        # Use submodels for the pipeline
        submodel_dict = {
            "transformer": transformer,
            "patchifier": patchifier,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "vae": vae,
            "prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
            "prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
            "prompt_enhancer_llm_model": prompt_enhancer_llm_model,
            "prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
            "allowed_inference_steps": allowed_inference_steps,
        }
        pipeline = LTXVideoPipeline(**submodel_dict)
        pipeline = LTXMultiScalePipeline(pipeline, latent_upsampler=latent_upsampler)

        self.pipeline = pipeline
        self.model = transformer 
        self.vae = vae
        # return pipeline, pipe

    def generate(

        self,

        input_prompt: str,

        n_prompt: str,

        image_start = None,

        image_end = None,

        input_video = None,

        sampling_steps = 50,

        image_cond_noise_scale:  float = 0.15,

        input_media_path: Optional[str] = None,

        strength: Optional[float] = 1.0,

        seed: int = 42,

        height: Optional[int] = 704,

        width: Optional[int] = 1216,

        frame_num: int = 81,

        frame_rate: int = 30,

        fit_into_canvas = True,

        callback=None,

        device: Optional[str] = None,

        VAE_tile_size = None,

        **kwargs,

    ):

        num_inference_steps1 = sampling_steps
        num_inference_steps2 = sampling_steps #10
        conditioning_strengths  = None
        conditioning_media_paths = []
        conditioning_start_frames = []


        if input_video != None:
            conditioning_media_paths.append(input_video) 
            conditioning_start_frames.append(0)
            height, width = input_video.shape[-2:]
        else:
            if image_start != None:
                frame_width, frame_height  = image_start.size
                height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas, 32)
                conditioning_media_paths.append(image_start) 
                conditioning_start_frames.append(0)
            if image_end != None:
                conditioning_media_paths.append(image_end) 
                conditioning_start_frames.append(frame_num-1)

        if len(conditioning_media_paths) == 0:
            conditioning_media_paths = None
            conditioning_start_frames = None

        if self.distilled :
            pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-distilled.yaml"
        else:
            pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-dev.yaml"
        # check if pipeline_config is a file
        if not os.path.isfile(pipeline_config):
            raise ValueError(f"Pipeline config file {pipeline_config} does not exist")
        with open(pipeline_config, "r") as f:
            pipeline_config = yaml.safe_load(f)


        # Validate conditioning arguments
        if conditioning_media_paths:
            # Use default strengths of 1.0
            if not conditioning_strengths:
                conditioning_strengths = [1.0] * len(conditioning_media_paths)
            if not conditioning_start_frames:
                raise ValueError(
                    "If `conditioning_media_paths` is provided, "
                    "`conditioning_start_frames` must also be provided"
                )
            if len(conditioning_media_paths) != len(conditioning_strengths) or len(
                conditioning_media_paths
            ) != len(conditioning_start_frames):
                raise ValueError(
                    "`conditioning_media_paths`, `conditioning_strengths`, "
                    "and `conditioning_start_frames` must have the same length"
                )
            if any(s < 0 or s > 1 for s in conditioning_strengths):
                raise ValueError("All conditioning strengths must be between 0 and 1")
            if any(f < 0 or f >= frame_num for f in conditioning_start_frames):
                raise ValueError(
                    f"All conditioning start frames must be between 0 and {frame_num-1}"
                )

        # Adjust dimensions to be divisible by 32 and num_frames to be (N * 8 + 1)
        height_padded = ((height - 1) // 32 + 1) * 32
        width_padded = ((width - 1) // 32 + 1) * 32
        num_frames_padded = ((frame_num - 2) // 8 + 1) * 8 + 1

        padding = calculate_padding(height, width, height_padded, width_padded)

        logger.warning(
            f"Padded dimensions: {height_padded}x{width_padded}x{num_frames_padded}"
        )


        # prompt_enhancement_words_threshold = pipeline_config[
        #     "prompt_enhancement_words_threshold"
        # ]

        # prompt_word_count = len(prompt.split())
        # enhance_prompt = (
        #     prompt_enhancement_words_threshold > 0
        #     and prompt_word_count < prompt_enhancement_words_threshold
        # )

        # # enhance_prompt = False

        # if prompt_enhancement_words_threshold > 0 and not enhance_prompt:
        #     logger.info(
        #         f"Prompt has {prompt_word_count} words, which exceeds the threshold of {prompt_enhancement_words_threshold}. Prompt enhancement disabled."
        #     )


        seed_everething(seed)
        device = device or get_device()
        generator = torch.Generator(device=device).manual_seed(seed)

        media_item = None
        if input_media_path:
            media_item = load_media_file(
                media_path=input_media_path,
                height=height,
                width=width,
                max_frames=num_frames_padded,
                padding=padding,
            )

        conditioning_items = (
            prepare_conditioning(
                conditioning_media_paths=conditioning_media_paths,
                conditioning_strengths=conditioning_strengths,
                conditioning_start_frames=conditioning_start_frames,
                height=height,
                width=width,
                num_frames=frame_num,
                padding=padding,
                pipeline=self.pipeline,
            )
            if conditioning_media_paths
            else None
        )

        stg_mode = pipeline_config.get("stg_mode", "attention_values")
        del pipeline_config["stg_mode"]
        if stg_mode.lower() == "stg_av" or stg_mode.lower() == "attention_values":
            skip_layer_strategy = SkipLayerStrategy.AttentionValues
        elif stg_mode.lower() == "stg_as" or stg_mode.lower() == "attention_skip":
            skip_layer_strategy = SkipLayerStrategy.AttentionSkip
        elif stg_mode.lower() == "stg_r" or stg_mode.lower() == "residual":
            skip_layer_strategy = SkipLayerStrategy.Residual
        elif stg_mode.lower() == "stg_t" or stg_mode.lower() == "transformer_block":
            skip_layer_strategy = SkipLayerStrategy.TransformerBlock
        else:
            raise ValueError(f"Invalid spatiotemporal guidance mode: {stg_mode}")

        # Prepare input for the pipeline
        sample = {
            "prompt": input_prompt,
            "prompt_attention_mask": None,
            "negative_prompt": n_prompt,
            "negative_prompt_attention_mask": None,
        }


        images = self.pipeline(
            **pipeline_config,
            ltxv_model = self,
            num_inference_steps1 = num_inference_steps1,
            num_inference_steps2 = num_inference_steps2,
            skip_layer_strategy=skip_layer_strategy,
            generator=generator,
            output_type="pt",
            callback_on_step_end=None,
            height=height_padded,
            width=width_padded,
            num_frames=num_frames_padded,
            frame_rate=frame_rate,
            **sample,
            media_items=media_item,
            strength=strength,
            conditioning_items=conditioning_items,
            is_video=True,
            vae_per_channel_normalize=True,
            image_cond_noise_scale=image_cond_noise_scale,
            mixed_precision=pipeline_config.get("mixed", self.mixed_precision_transformer),
            callback=callback,
            VAE_tile_size = VAE_tile_size,
            device=device,
            # enhance_prompt=enhance_prompt,
        )
        if images == None:
            return None

        # Crop the padded images to the desired resolution and number of frames
        (pad_left, pad_right, pad_top, pad_bottom) = padding
        pad_bottom = -pad_bottom
        pad_right = -pad_right
        if pad_bottom == 0:
            pad_bottom = images.shape[3]
        if pad_right == 0:
            pad_right = images.shape[4]
        images = images[:, :, :frame_num, pad_top:pad_bottom, pad_left:pad_right]
        images = images.sub_(0.5).mul_(2).squeeze(0)
        return images


def prepare_conditioning(

    conditioning_media_paths: List[str],

    conditioning_strengths: List[float],

    conditioning_start_frames: List[int],

    height: int,

    width: int,

    num_frames: int,

    padding: tuple[int, int, int, int],

    pipeline: LTXVideoPipeline,

) -> Optional[List[ConditioningItem]]:
    """Prepare conditioning items based on input media paths and their parameters.



    Args:

        conditioning_media_paths: List of paths to conditioning media (images or videos)

        conditioning_strengths: List of conditioning strengths for each media item

        conditioning_start_frames: List of frame indices where each item should be applied

        height: Height of the output frames

        width: Width of the output frames

        num_frames: Number of frames in the output video

        padding: Padding to apply to the frames

        pipeline: LTXVideoPipeline object used for condition video trimming



    Returns:

        A list of ConditioningItem objects.

    """
    conditioning_items = []
    for path, strength, start_frame in zip(
        conditioning_media_paths, conditioning_strengths, conditioning_start_frames
    ):
        if isinstance(path, Image.Image):
            num_input_frames = orig_num_input_frames =  1
        else:
            num_input_frames = orig_num_input_frames = get_media_num_frames(path)
        if hasattr(pipeline, "trim_conditioning_sequence") and callable(
            getattr(pipeline, "trim_conditioning_sequence")
        ):
            num_input_frames = pipeline.trim_conditioning_sequence(
                start_frame, orig_num_input_frames, num_frames
            )
        if num_input_frames < orig_num_input_frames:
            logger.warning(
                f"Trimming conditioning video {path} from {orig_num_input_frames} to {num_input_frames} frames."
            )

        media_tensor = load_media_file(
            media_path=path,
            height=height,
            width=width,
            max_frames=num_input_frames,
            padding=padding,
            just_crop=True,
        )
        conditioning_items.append(ConditioningItem(media_tensor, start_frame, strength))
    return conditioning_items


def get_media_num_frames(media_path: str) -> int:
    if isinstance(media_path, Image.Image):
        return 1
    elif torch.is_tensor(media_path):
        return media_path.shape[1]
    elif isinstance(media_path, str) and any( media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]):
        reader = imageio.get_reader(media_path)
        return min(reader.count_frames(), max_frames)
    else:
        raise Exception("video format not supported")


def load_media_file(

    media_path: str,

    height: int,

    width: int,

    max_frames: int,

    padding: tuple[int, int, int, int],

    just_crop: bool = False,

) -> torch.Tensor:
    if isinstance(media_path, Image.Image):
        # Input image
        media_tensor = load_image_to_tensor_with_resize_and_crop(
            media_path, height, width, just_crop=just_crop
        )
        media_tensor = torch.nn.functional.pad(media_tensor, padding)

    elif torch.is_tensor(media_path):
        media_tensor = media_path.unsqueeze(0)
        num_input_frames = media_tensor.shape[2]
    elif isinstance(media_path, str) and any( media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]):
        reader = imageio.get_reader(media_path)
        num_input_frames = min(reader.count_frames(), max_frames)

        # Read and preprocess the relevant frames from the video file.
        frames = []
        for i in range(num_input_frames):
            frame = Image.fromarray(reader.get_data(i))
            frame_tensor = load_image_to_tensor_with_resize_and_crop(
                frame, height, width, just_crop=just_crop
            )
            frame_tensor = torch.nn.functional.pad(frame_tensor, padding)
            frames.append(frame_tensor)
        reader.close()

        # Stack frames along the temporal dimension
        media_tensor = torch.cat(frames, dim=2)
    else:
        raise Exception("video format not supported")
    return media_tensor


if __name__ == "__main__":
    main()