File size: 3,087 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
import torch
from einops import rearrange
from PIL import Image


def convert_to_numpy(image):
    if isinstance(image, Image.Image):
        image = np.array(image)
    elif isinstance(image, torch.Tensor):
        image = image.detach().cpu().numpy()
    elif isinstance(image, np.ndarray):
        image = image.copy()
    else:
        raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
    return image

class DepthV2Annotator:
    def __init__(self, cfg, device=None):
        from .dpt import DepthAnythingV2
        
        # Model configurations for different variants
        self.model_configs = {
            'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
            'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
            'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
            'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
        }
        
        # Get model variant from config, default to 'vitl' if not specified
        model_variant = cfg.get('MODEL_VARIANT', 'vitl')
        if model_variant not in self.model_configs:
            raise ValueError(f"Invalid model variant '{model_variant}'. Must be one of: {list(self.model_configs.keys())}")
        
        pretrained_model = cfg['PRETRAINED_MODEL']
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
        
        # Get configuration for the selected model variant
        config = self.model_configs[model_variant]
        
        # Initialize model with the appropriate configuration
        self.model = DepthAnythingV2(
            encoder=config['encoder'], 
            features=config['features'], 
            out_channels=config['out_channels']
        ).to(self.device)
        
        self.model.load_state_dict(
            torch.load(
                pretrained_model,
                map_location=self.device,
                weights_only=True
            )
        )
        self.model.eval()

    @torch.inference_mode()
    @torch.autocast('cuda', enabled=False)
    def forward(self, image):
        image = convert_to_numpy(image)
        depth = self.model.infer_image(image)

        depth_pt = depth.copy()
        depth_pt -= np.min(depth_pt)
        depth_pt /= np.max(depth_pt)
        depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)

        depth_image = depth_image[..., np.newaxis]
        depth_image = np.repeat(depth_image, 3, axis=2)
        return depth_image


class DepthV2VideoAnnotator(DepthV2Annotator):
    def forward(self, frames):
        ret_frames = []
        for frame in frames:
            anno_frame = super().forward(np.array(frame))
            ret_frames.append(anno_frame)
        return ret_frames